In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The m...In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.展开更多
In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting wh...In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.展开更多
In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive bl...In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced "spectral-timing-polarimetry" techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.展开更多
基金support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)support by ASI, under the dedicated eXTP agreements and agreement ASI-INAF (Grant No. 2017-14-H.O.)+3 种基金by INAF and INFN under project REDSOXsupport from the Deutsche Zentrum für Luft- und Raumfahrt, the German Aerospce Center (DLR)support of Science Centre (Grant No. 2013/10/M/ST9/00729)support from MINECO (Grant No. ESP2017-82674-R) and FEDER funds
文摘In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.
基金supported by the Royal Society,ERC Starting(Grant No.639217)he European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Global Fellowship(Grant No.703916)+10 种基金the National Natural Science Foundation of China(Grant Nos.11233001,11773014,11633007,11403074,11333005,11503008,and 11590781)the National Basic Research Program of China(Grant No.2015CB857100)NASA(Grant No.NNX13AD28A)an ARC Future Fellowship(Grant No.FT120100363)the National Science Foundation(Grant No.PHY-1430152)the Spanish MINECO(Grant No.AYA2016-76012-C3-1-P)the ICCUB(Unidad de Excelencia’Maria de Maeztu’)(Grant No.MDM-2014-0369)EU’s Horizon Programme through a Marie Sklodowska-Curie Fellowship(Grant No.702638)the Polish National Science Center(Grant Nos.2015/17/B/ST9/03422,2015/18/M/ST9/00541,2013/10/M/ST9/00729,and 2015/18/A/ST9/00746)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)the NWO Veni Fellowship(Grant No.639.041.647)
文摘In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.
基金financial contribution from the agreement ASI-INAF n.2017-14-H.Osupport of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)the Polish National Science Centre(Grant No.2013/10/M/ST9/00729)
文摘In this paper we describe the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to accretion flows in the strong field gravity regime around both stellar-mass and supermassive black-holes. eXTP has the unique capability of using advanced "spectral-timing-polarimetry" techniques to analyze the rapid variations with three orthogonal diagnostics of the flow and its geometry, yielding unprecedented insight into the inner accreting regions, the effects of strong field gravity on the material within them and the powerful outflows which are driven by the accretion process.