Most propulsion systems of vehicles travelling in the aquatic environment are equipped with propellers. Observations of nature, however, show that the absolute majority of organisms travel through water using wave mot...Most propulsion systems of vehicles travelling in the aquatic environment are equipped with propellers. Observations of nature, however, show that the absolute majority of organisms travel through water using wave motion, paddling or using water jet power. Inspired by these observations of nature, an innovative propulsion system working in aquatic environment was developed. This paper presents the design of the water propulsion system. Particular attention was paid to the use of paddling techniques and water jet power. A group of organisms that use those mechanisms to travel through water was selected and analysed. The results of research were used in the design of a propulsion system modelled simultaneously on two methods of movement in the aquatic environment. A method for modelling a propulsion system using a combination of the two solutions and the result were described. A conceptual design and a prototype constructed based on the solution were presented. With respect to the solution developed, studies and analyses of selected parameters of the prototype were described.展开更多
文摘Most propulsion systems of vehicles travelling in the aquatic environment are equipped with propellers. Observations of nature, however, show that the absolute majority of organisms travel through water using wave motion, paddling or using water jet power. Inspired by these observations of nature, an innovative propulsion system working in aquatic environment was developed. This paper presents the design of the water propulsion system. Particular attention was paid to the use of paddling techniques and water jet power. A group of organisms that use those mechanisms to travel through water was selected and analysed. The results of research were used in the design of a propulsion system modelled simultaneously on two methods of movement in the aquatic environment. A method for modelling a propulsion system using a combination of the two solutions and the result were described. A conceptual design and a prototype constructed based on the solution were presented. With respect to the solution developed, studies and analyses of selected parameters of the prototype were described.