Three-dimensional(3D)printing is an innovative manufacturingmethod with the potential to revolutionize topical and transdermal dosage forms.Nowadays,it is established that Vatbased photopolymerization(VP)3D printing t...Three-dimensional(3D)printing is an innovative manufacturingmethod with the potential to revolutionize topical and transdermal dosage forms.Nowadays,it is established that Vatbased photopolymerization(VP)3D printing technologies offer superior printing efficiency and versatility compared to other 3D printing technologies available on the market.However,there are some limitations that impair their full application in pharmaceutical contexts,such as the lack of a range of biocompatiblematerials for topical and transdermal applications.This reviewarticle explores all types of VP-based 3D printing and discusses the relevance of implementing this kind of technology.We start with a detailed description of the printing process,focusing on the commercial materials available and lab-made resins proposed by different authors.We also review recent studies in this field,which mainly focus on the fabrication of transdermal devices based on microneedle arrays.In the future,it is expected that the manufacturers of 3D printers invest in modifications to the printing apparatus to allow the simultaneous printing of different resins and/or compound types,which will open frontiers to the personalization of treatment approaches.展开更多
基金funded by the Fundacao para a Ciencia e Tecnologia,Portugal[UIDB/04138/2020 and UIDP/04138/2020 to iMed.ULisboa,CEECINST/00145/2018 to J Marto,fellowship 2020.10138BD to A.Graca and UI/BD/153624/2022 to S.Bom].
文摘Three-dimensional(3D)printing is an innovative manufacturingmethod with the potential to revolutionize topical and transdermal dosage forms.Nowadays,it is established that Vatbased photopolymerization(VP)3D printing technologies offer superior printing efficiency and versatility compared to other 3D printing technologies available on the market.However,there are some limitations that impair their full application in pharmaceutical contexts,such as the lack of a range of biocompatiblematerials for topical and transdermal applications.This reviewarticle explores all types of VP-based 3D printing and discusses the relevance of implementing this kind of technology.We start with a detailed description of the printing process,focusing on the commercial materials available and lab-made resins proposed by different authors.We also review recent studies in this field,which mainly focus on the fabrication of transdermal devices based on microneedle arrays.In the future,it is expected that the manufacturers of 3D printers invest in modifications to the printing apparatus to allow the simultaneous printing of different resins and/or compound types,which will open frontiers to the personalization of treatment approaches.