A new organic charge transfer molecular complex salt of o-toluidinium picrate (OTP) was synthesised and the single crystals were grown by the slow solvent evaporation solution growth technique using methanol as a solv...A new organic charge transfer molecular complex salt of o-toluidinium picrate (OTP) was synthesised and the single crystals were grown by the slow solvent evaporation solution growth technique using methanol as a solvent at room temperature. Formation of the new crystal has been confirmed by single crystal X-ray diffraction (XRD) and NMR spectroscopic techniques. The crystal structure determined by single crystal X-ray diffraction indicates that both the cation and the anion are interlinked to each other by three types of intermolecular hydrogen bonds, namely N(4)-H(4A)···O(7), N(4)-H(4B)···O(5) and N(4)-H(4C)···O(7). The title compound (OTP) crystallizes in monoclinic crystal system with the centrosymmetric space group P21/c. Fourier transform infrared (FT IR) spectral analysis was used to confirm the presence of various functional groups in the grown crystal. The optical properties were analyzed by the UV-Vis-NIR and fluorescence emission studies.展开更多
文摘A new organic charge transfer molecular complex salt of o-toluidinium picrate (OTP) was synthesised and the single crystals were grown by the slow solvent evaporation solution growth technique using methanol as a solvent at room temperature. Formation of the new crystal has been confirmed by single crystal X-ray diffraction (XRD) and NMR spectroscopic techniques. The crystal structure determined by single crystal X-ray diffraction indicates that both the cation and the anion are interlinked to each other by three types of intermolecular hydrogen bonds, namely N(4)-H(4A)···O(7), N(4)-H(4B)···O(5) and N(4)-H(4C)···O(7). The title compound (OTP) crystallizes in monoclinic crystal system with the centrosymmetric space group P21/c. Fourier transform infrared (FT IR) spectral analysis was used to confirm the presence of various functional groups in the grown crystal. The optical properties were analyzed by the UV-Vis-NIR and fluorescence emission studies.