期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Electrocatalytic CO_(2) reduction to C_(2)H_(4): From lab to fab
1
作者 Zeyu Guo Fabao Yang +10 位作者 Xiaotong Li Huiwen Zhu Hainam Do Kam Loon Fow Jonathan D.Hirst Tao wu Qiulin Ye Yaqi Peng Hao Bin wu angjian wu Mengxia Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期540-564,I0012,共26页
The global concerns of energy crisis and climate change,primarily caused by carbon dioxide(CO_(2)),are of utmost importance.Recently,the electrocatalytic CO_(2) reduction reaction(CO_(2)RR) to high value-added multi-c... The global concerns of energy crisis and climate change,primarily caused by carbon dioxide(CO_(2)),are of utmost importance.Recently,the electrocatalytic CO_(2) reduction reaction(CO_(2)RR) to high value-added multi-carbon(C_(2+)) products driven by renewable electricity has emerged as a highly promising solution to alleviate energy shortages and achieve carbon neutrality.Among these C_(2+) products,ethylene(C_(2)H_(4))holds particular importance in the petrochemical industry.Accordingly,this review aims to establish a connection between the fundamentals of electrocatalytic CO_(2) reduction reaction to ethylene(CO_(2)RRto-C_(2)H_(4)) in laboratory-scale research(lab) and its potential applications in industrial-level fabrication(fab).The review begins by summarizing the fundamental aspects,including the design strategies of high-performance Cu-based electrocatalysts and advanced electrolyzer devices.Subsequently,innovative and value-added techniques are presented to address the inherent challenges encountered during the implementations of CO_(2)RR-to-C_(2)H_(4) in industrial scenarios.Additionally,case studies of the technoeconomic analysis of the CO_(2)RR-to-C_(2)H_(4) process are discussed,taking into factors such as costeffectiveness,scalability,and market potential.The review concludes by outlining the perspectives and challenges associated with scaling up the CO_(2)RR-to-C_(2)H_(4) process.The insights presented in this review are expected to make a valuable contribution in advancing the CO_(2)RR-to-C_(2)H_(4) process from lab to fab. 展开更多
关键词 CO_(2) electroreduction reaction ETHYLENE Gas diffusion electrode Machine learning Density functional theory Techno-economic analysis
下载PDF
Zeolite-mediated hybrid Cu^(+)/Cu~0 interface for electrochemical nitrate reduction to ammonia
2
作者 Jiabao Lv angjian wu +12 位作者 Liang Wang Yunhao Zhong Zhihao Zeng Qunxing Huang Xiaoqing Lin Hao Zhang Shaojun Liu Qian Liu Songqiang Zhu Xiaodong Li Jianhua Yan Zhifu Qi Hao Bin wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期136-143,I0005,共9页
The electrocatalytic conversion of reactive nitrogen species to ammonia is a promising strategy for efficient NH_(3) synthesis.In this study,we reveal that the hybrid Cu^(+)/Cu~0 interface is catalytically active for ... The electrocatalytic conversion of reactive nitrogen species to ammonia is a promising strategy for efficient NH_(3) synthesis.In this study,we reveal that the hybrid Cu^(+)/Cu~0 interface is catalytically active for electrochemical ammonia synthesis from nitrate reduction.To maintain the hybrid Cu^(+)/Cu~0 state at negative reaction potentials,hydrophilic zeolite is used to modify Cu/Cu_(2)O electrocatalyst,which demonstrates an impressive NH_(3) production rate of 41.65 mg h^(-1) cm^(-2)with ~100% Faradaic efficiency of ammonia synthesis at-0.6 V vs.RHE.In-situ Raman spectroscopy unveil the high activity originates from the zeolite reconstruction at the electrode–electrolyte interface,which protects the valence state of Cu~0/Cu^(+) site under negative potential and promotes electrochemical activity towards NH_(3) synthesis. 展开更多
关键词 Electrochemical nitrate reduction reaction Ammonia synthesis In-situ Raman spectroscopy ZEOLITE Density functional theory
下载PDF
Experimental and simulation investigation of electrical and plasma parameters in a low pressure inductively coupled argon plasma 被引量:1
3
作者 Jian YANG angjian wu +6 位作者 Xiaodong LI Yang LIU Fengsen ZHU Zhiliang CHEN Jianhua YAN Ruijuan CHEN Wangjun SHEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第11期12-22,共11页
The electrical and plasma parameters of a low pressure inductively coupled argon plasma are investigated over a wide range of parameters(RF power, flow rate and pressure) by diverse characterizations. The external a... The electrical and plasma parameters of a low pressure inductively coupled argon plasma are investigated over a wide range of parameters(RF power, flow rate and pressure) by diverse characterizations. The external antenna voltage and current increase with the augment of RF power, whereas decline with the enhancement of gas pressure and flow rate conversely.Compared with gas flow rate and pressure, the power transfer efficiency is significantly improved by RF power, and achieved its maximum value of 0.85 after RF power injected excess125 W. Optical emission spectroscopy(OES) provides the local mean values of electron excited temperature and electron density in inductively coupled plasma(ICP) post regime, which vary in a range of 0.81 eV to 1.15 eV and 3.7×10^(16)m^(-3)to 8.7×10^(17)m^(-3)respectively. Numerical results of the average magnitudes of electron temperature and electron density in twodimensional distribution exhibit similar variation trend with the experimental results under different operating condition by using COMSOL Multiphysics. By comprehensively understanding the characteristics in a low pressure ICP, optimized operating conditions could be anticipated aiming at different academic and industrial applications. 展开更多
关键词 ICP OES simulation electrical properties
下载PDF
Conversion of coalbed methane surrogate into hydrogen and graphene sheets using rotating gliding arc plasma
4
作者 angjian wu Hang CHEN +8 位作者 Jiageng ZHENG Jian YANG Xiaodong LI Changming DU Zhiliang CHEN Aoni XU Jie QIU Yi XU Jianhua YAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第11期55-67,共13页
The use of atmospheric rotating gliding arc(RGA)plasma is proposed as a facile,scalable and catalyst-free approach to synthesizing hydrogen(H2)and graphene sheets from coalbed methane(CBM).CH4 is used as a CBM surroga... The use of atmospheric rotating gliding arc(RGA)plasma is proposed as a facile,scalable and catalyst-free approach to synthesizing hydrogen(H2)and graphene sheets from coalbed methane(CBM).CH4 is used as a CBM surrogate.Based on a previous investigation of discharge properties,product distribution and energy efficiency,the operating parameters such as CH4 concentration,applied voltage and gas flow rate can effectively affect the CH4 conversion rate,the selectivity of H2 and the properties of solid generated carbon.Nevertheless,the basic properties of RGA plasma and its role in CH4 conversion are scarcely mentioned.In the present work,a 3D RGA model,with a detailed nonequilibrium CH4/Ar plasma chemistry,is developed to validate the previous experiments on CBM conversion,aiming in particular at the distribution of H2 and other gas products.Our results demonstrate that the dynamics of RGA is derived from the joint effects of electron convection,electron migration and electron diffusion,and is prominently determined by the variation of the gas flow rate and applied voltage.Subsequently,a combined experimental and chemical kinetical simulation is performed to analyze the selectivity of gas products in an RGA reaction,taking into consideration the formation and loss pathways of crucial targeted substances(such as CH4,C2H2,H2 and H radicals)and corresponding contribution rates.Additionally,the effects of operating conditions on the properties of solid products are investigated by scanning electron microscopy(SEM)and Raman spectroscopy.The results show that increasing the applied voltage and decreasing CH4 concentration will change the solid carbon from its initial spherical structure into folded multilayer graphene sheets,while the size of the graphene sheets is slightly affected by the change in gas flow rate. 展开更多
关键词 coalbed METHANE HYDROGEN graphene SHEETS ROTATING GLIDING arc(RGA) multi-physical field coupling plasma chemistry
下载PDF
Co-synthesis of vertical graphene nanosheets and high-value gases using inductively coupled plasma enhanced chemical vapor deposition
5
作者 Jian YANG Ruiyang XU +4 位作者 angjian wu Xiaodong LI Li LI Wangjun SHEN Jianhua YAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期86-95,共10页
One-step controllable synthesis of vertical graphene nanosheets (VGs) and high-value gases was achieved using inductively coupled plasma enhanced chemical vapor deposition (ICPECVD). The basic physical properties ... One-step controllable synthesis of vertical graphene nanosheets (VGs) and high-value gases was achieved using inductively coupled plasma enhanced chemical vapor deposition (ICPECVD). The basic physical properties of the ICPECVD process were revealed via electrical diagnosis and optical emission spectroscopy. The coil current and voltage increased linearly with the augmenting of injected power, and CH, C2, H2 and H were detected at a wavelength from 300 to 700 nm, implying the generation of abundant graphene-building species. The morphology and structure of solid carbon products, graphene nanosheets, were systemically characterized in terms of the variations of operating conditions, such as pressure, temperature, gas proportion, etc. The results indicated that an appropriate operating condition was indispensable for the growth process of graphene nanosheets. In the present work, the optimized result was achieved at the pressure, heating temperature, applied power and gas proportion of 600 mTorr, 800 ~C, 500 W and 20:20:15, respectively, and the augmenting of both CH4 and H2 concentrations had a positive effect on the etching of amorphous carbon. Additionally, H2 and C2 hydrocarbons were detected as the main exhaust gases. The selectivity of H2 and C2H2, measured in exhaust gases, reached up to 52% and 8%, respectively, which implied a process of free radical reactions and electron collision dissociation. Based on a comprehensive investigation of spectral and electrical parameters and synthesized products, the reaction mechanism of collision, dissociation, diffusion, etc, in ICPECVD could be speculated, providing a probable guide for experimental and industrial applications. 展开更多
关键词 vertical graphene nanosheets gaseous products OES electrical diagnosis ICPECVD
下载PDF
Synthesis of vertical graphene nanowalls by cracking n-dodecane using RF inductively-coupled plasma-enhanced chemical vapor deposition
6
作者 Jiageng ZHENG Qinhuai TAN +5 位作者 Hang CHEN angjian wu Xiaodong LI Jianhua YAN Jiaxu DAI Jiao ZHOU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第2期95-103,共9页
A facile and controllable one-step method to treat liquid hydrocarbons and synthesize vertical graphene nanowalls has been developed by using the technique of inductively-coupled plasma-enhanced chemical vapor deposit... A facile and controllable one-step method to treat liquid hydrocarbons and synthesize vertical graphene nanowalls has been developed by using the technique of inductively-coupled plasma-enhanced chemical vapor deposition for plasma cracking of n-dodecane.Herein,the morphology and microstructure of solid carbon material and graphene nanowalls are characterized in terms of different operating conditions,i.e.input power,H2/Ar ratio,injection rate and reaction temperature.The results reveal that the optimal operating conditions were 500 W,5:10,30μl min^-1 and 800℃ for the input power,H2/Ar ratio,injection rate and reaction temperature,respectively.In addition,the degree of graphitization and the gaseous product are analyzed by Raman spectroscopy and gas chromatography detection.It can be calculated from the Raman spectrum that the relative intensity of ID/IG is approximately 1.55,and I2D/IG is approximately 0.48,indicating that the graphene prepared from n-dodecane has a rich defect structure and a high degree of graphitization.By calculating the mass loading and detecting the outlet gas,we find that the cracking rate of n-dodecane is only 6%-7%and that the gaseous products below C2 mainly include CH4,C2H2,C2H4,C2H6 and H2.Among them,the proportion of hydrogen in the outlet gas of n-dodecane cracking ranges from 1.3%-15.1%under different hydrogen flows.Based on our research,we propose a brand new perspective for both liquid hydrocarbon treatment and other value-added product syntheses. 展开更多
关键词 ICPECVD n-dodecane cracking vertical graphene nanowalls
下载PDF
Progress in fundamental research on thermal desorption remediation of organic compound-contaminated soil 被引量:5
7
作者 Bo Wang angjian wu +5 位作者 Xiaodong Li Longjie Ji Chen Sun Zongze Shen Tong Chen Zuohe Chi 《Waste Disposal and Sustainable Energy》 2021年第2期83-95,共13页
Thermal desorption(TD)is a mainstream technology for the remediation of organic compound-contaminated soil.By reviewing the domestic and foreign research on the remediation of organic compound-contaminated soil by TD,... Thermal desorption(TD)is a mainstream technology for the remediation of organic compound-contaminated soil.By reviewing the domestic and foreign research on the remediation of organic compound-contaminated soil by TD,this paper systematically introduces the principle,characteristics,and classification of TD.The impact of key operating parameters(such as heating temperature and heating time),certain physical and chemical properties(such as soil texture,moisture content),and external conditions(such as additives and the carrier gas)on the TD process is summarized.Next,pollutants’migration and their transformation processes,as well as the laws governing the TD process,are briefly described.Finally,the prospects of TD,in terms of its future research and development directions,are described,with the aim of providing references for the application and promotion of TD. 展开更多
关键词 Organic compound-contaminated soil Soil remediation Thermal desorption Fundamental research
原文传递
Novel development of VO_(x)-CeO_(x)-WO_(x)/TiO_(2) catalyst for low-temperature catalytic oxidation of chloroaromatic organics 被引量:2
8
作者 Yunfeng Ma Jianwen Lai +6 位作者 Jiayao wu Xiaoqing Lin Hong Yu Hao Zhang angjian wu Jisheng Long Xiaodong Li 《Waste Disposal and Sustainable Energy》 2022年第4期259-269,共11页
A novel selective catalytic reduction(SCR)catalyst with high catalytic activity on chloroaromatic organics at lower temperatures(160-180℃)is critical for municipal solid waste incineration(MSWI)plants.This study prep... A novel selective catalytic reduction(SCR)catalyst with high catalytic activity on chloroaromatic organics at lower temperatures(160-180℃)is critical for municipal solid waste incineration(MSWI)plants.This study prepares a series of honeycomb-type VO_(x)/TiO_(2) catalysts and finally develops a new low-temperature catalyst with high catalytic activity in eliminating chloroaromatic organics.Based on the conversion efficiency(CE)of 1,2-dichlorobenzene(1,2-DCB)and CO_(2) selectivity,the optimal VO_(x) content of 4.06%(in weight)in VO_(x)/TiO_(2) catalyst is first confirmed.By modifying CeO_(x) and WO_(x),a novel honeycomb-type catalyst of VO_(x)-CeO_(x)-WO_(x)/TiO_(2) achieves the highest CE(93.1%-93.6%)and CO_(2) selectivity(40.9%-60.7%)at 150-200℃.It was found that the CeO_(x) and WO_(x) can improve the catalytic activity by enriching the surface content of V and O,increasing the proportion of V5+and Osurf,enlarging the supply source of reactive oxygen species and their storage capacity,and accelerating the redox cycle of VO_(x),CeO_(x),WO_(x),and reactive oxygen species.This study can guide the development of monolithic low-temperature catalysts with high catalytic activity in eliminating chloroaromatic organics in MSWI flue gas. 展开更多
关键词 VO_(x)/TiO_(2)catalysts Honeycomb catalysts Catalytic activity 1 2-dichlorobenzene Modification of CeO_(x)and WOx
原文传递
Suggested guidelines for emergency treatment of medical waste during COVID-19:Chinese experience 被引量:3
9
作者 Yufeng Ma Xiaoqing Lin +3 位作者 angjian wu Qunxing Huang Xiaodong Li Jianhua Yan 《Waste Disposal and Sustainable Energy》 2020年第2期81-84,共4页
During the period of COVID-19,the medical waste disposal capacity is seriously inadequate.The main technical process of the municipal solid waste incineration system is the same as that of the medical waste incinerati... During the period of COVID-19,the medical waste disposal capacity is seriously inadequate.The main technical process of the municipal solid waste incineration system is the same as that of the medical waste incineration system.Under the conditions of optimizing the technological process,improving the supporting facilities,and controlling the co-processing ratio,the municipal solid waste incinerator(grate furnace)co-processing medical waste is feasible.Some suggested guidelines for emergency treatment of medical waste from COVID-19 have been provided by China. 展开更多
关键词 Medical waste COVID-19 Emergency treatment
原文传递
Review of low-temperature plasma nitrogen fixation technology 被引量:1
10
作者 Hang Chen Dingkun Yuan +2 位作者 angjian wu Xiaoqing Lin Xiaodong Li 《Waste Disposal and Sustainable Energy》 2021年第3期201-217,共17页
Nitrogen fixation is essential for all forms of life,as nitrogen is required to biosynthesize fundamental building blocks of creatures,plants,and other life forms.As the main method of artificial nitrogen fixation,Ha... Nitrogen fixation is essential for all forms of life,as nitrogen is required to biosynthesize fundamental building blocks of creatures,plants,and other life forms.As the main method of artificial nitrogen fixation,Haber–Bosch process(ammonia synthesis)has been supporting the agriculture and chemical industries since the 1910s.However,the disadvantages inherent to the Haber–Bosch process,such as high energy consumption and high emissions,cannot be ignored.Therefore,developing a green nitrogen fixation process has always been a research hotspot.Among the various technologies,plasma-assisted nitrogen fixation technology is very promising due to its small scale,mild reaction conditions,and flexible parameters.In the present work,the basic principles of plasma nitrogen fixation technology and its associated research progress are reviewed.The production efficiency of various plasmas is summarized and compared.Eventually,the prospect of nitrogen fixation using low-temperature plasma in the future was proposed. 展开更多
关键词 PLASMA Ammonia synthesis Nitrogen oxides Plasma activated water
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部