A oanstructive method is presented to design controllers that force the output of nonlinear systems in a strict feedback form to track a bounded and sufficient smooth reference trajectory asymptotically. Under suitabl...A oanstructive method is presented to design controllers that force the output of nonlinear systems in a strict feedback form to track a bounded and sufficient smooth reference trajectory asymptotically. Under suitable condition with the initial output tracking error, the proposed controllers guarantee the output tracking error within a symmtric or an asymmetric pre-specified limit range, and boundedness of all signals of the closed loop system. A transformation is inmxuced to take care of the output tracking error constraint. Smooth and/or p -times differentiable step functions are propsed and incor- porated in the output tracking error transformation to overcome difficulties due to the asynxnetric limit range on the output tracking error. As a result, there are no switchings in the proposed controllers despite of the asymmnetric limit range.展开更多
文摘A oanstructive method is presented to design controllers that force the output of nonlinear systems in a strict feedback form to track a bounded and sufficient smooth reference trajectory asymptotically. Under suitable condition with the initial output tracking error, the proposed controllers guarantee the output tracking error within a symmtric or an asymmetric pre-specified limit range, and boundedness of all signals of the closed loop system. A transformation is inmxuced to take care of the output tracking error constraint. Smooth and/or p -times differentiable step functions are propsed and incor- porated in the output tracking error transformation to overcome difficulties due to the asynxnetric limit range on the output tracking error. As a result, there are no switchings in the proposed controllers despite of the asymmnetric limit range.