In this study,S-scheme-based hydrothermal synthesis of Ag-CuBi_(2)O_(4)/CNTs/Bi_(2)S_(3)layered composites has been successfully reported.The photo-degradation of toxic dyes,viz.methyl orange(MO),and methylene blue(MB...In this study,S-scheme-based hydrothermal synthesis of Ag-CuBi_(2)O_(4)/CNTs/Bi_(2)S_(3)layered composites has been successfully reported.The photo-degradation of toxic dyes,viz.methyl orange(MO),and methylene blue(MB),has been used to examine nanocomposites with varying weight percent of Bi_(2)S_(3)for photocat-alytic activity in the visible range.Among candidates,Ag-CuBi_(2)O_(4)/CNTs/Bi_(2)S_(3)with a 10%loading of Bi_(2)S_(3)outperformed both pure and hybrid composites in photocatalytic activity.For MO degradation,the hybrid composite with 10%Bi_(2)S_(3)loading degrades 7.04 times higher than pristine CuBi_(2)O_(4)and Bi_(2)S_(3)samples,and for MB degradation,it degrades 4.96 times higher than pristine samples.High surface area,less re-combination rate of photogenerated charge carriers,photogenerated carriers faster separation,and high redox ability of Ag-CuBi_(2)O_(4)/CNTs/Bi_(2)S_(3)(10%)are all attributed to the improving photocatalytic perfor-mance.Even after ten cycles,the hybrid composite is chemically stable and reusable.Carbon nanotubes(CNTs)are a transfer bridge in layered structure for electrons because of their coordinated Fermi level between Ag-CuBi_(2)O_(4)and Bi_(2)S_(3).In addition,the scavenger and electron spin resonance(ESR)experiments verified that·O_(2)^(−),·OH,and h+were the important reactive species that successfully facilitated the pho-tocatalytic degradation process to degrade dyes.This study presents a straightforward and economical approach for obtaining a stable semiconductor-based photocatalytic system and a potential technique for future applications.展开更多
基金the Researchers Supporting Project number(No.RSP2023R6),King Saud University,Riyadh,Saudi Arabia.
文摘In this study,S-scheme-based hydrothermal synthesis of Ag-CuBi_(2)O_(4)/CNTs/Bi_(2)S_(3)layered composites has been successfully reported.The photo-degradation of toxic dyes,viz.methyl orange(MO),and methylene blue(MB),has been used to examine nanocomposites with varying weight percent of Bi_(2)S_(3)for photocat-alytic activity in the visible range.Among candidates,Ag-CuBi_(2)O_(4)/CNTs/Bi_(2)S_(3)with a 10%loading of Bi_(2)S_(3)outperformed both pure and hybrid composites in photocatalytic activity.For MO degradation,the hybrid composite with 10%Bi_(2)S_(3)loading degrades 7.04 times higher than pristine CuBi_(2)O_(4)and Bi_(2)S_(3)samples,and for MB degradation,it degrades 4.96 times higher than pristine samples.High surface area,less re-combination rate of photogenerated charge carriers,photogenerated carriers faster separation,and high redox ability of Ag-CuBi_(2)O_(4)/CNTs/Bi_(2)S_(3)(10%)are all attributed to the improving photocatalytic perfor-mance.Even after ten cycles,the hybrid composite is chemically stable and reusable.Carbon nanotubes(CNTs)are a transfer bridge in layered structure for electrons because of their coordinated Fermi level between Ag-CuBi_(2)O_(4)and Bi_(2)S_(3).In addition,the scavenger and electron spin resonance(ESR)experiments verified that·O_(2)^(−),·OH,and h+were the important reactive species that successfully facilitated the pho-tocatalytic degradation process to degrade dyes.This study presents a straightforward and economical approach for obtaining a stable semiconductor-based photocatalytic system and a potential technique for future applications.