Urbanization contributes to extensive land use changes and environmental degradation which may influence changes in soil properties. These abiotic changes may aggravate invasions and favour the distribution and number...Urbanization contributes to extensive land use changes and environmental degradation which may influence changes in soil properties. These abiotic changes may aggravate invasions and favour the distribution and number of invasive species in urban areas which could negatively impact biodiversity. This case study was, therefore, undertaken in the metropolitan city of Kolkata to assess the existing plant species richness (both native and exotic) and to determine the relative role of some soil physico-chemical parameters on species richness. Plant species were recorded and soil samples were collected from each study site. The total species richness ranged from 4 to 25 with 50% of sites having a median number of 11 species. The presence of at least 3 or more invasive species was observed in >80% of sites. The mean and median values of soil parameters showed considerable variation in soil properties between sites. Urban soils had elevated pH values and higher available N, P and Ca. Soil available N appeared to be significantly correlated with both total species and exotic (including invasive) species richness while available phosphorus showed significant correlation with only exotic species richness. The GLM Poisson log-linear models showed a significant positive relationship of soil N with total species richness and exotic richness including invasive species richness in the study area.展开更多
The successful establishment of an invasive plant in a novel environment has been attributed to the phenotypic plasticity of plant traits, with most studies focussing on vegetative trait plasticity in either experimen...The successful establishment of an invasive plant in a novel environment has been attributed to the phenotypic plasticity of plant traits, with most studies focussing on vegetative trait plasticity in either experimental and/or natural habitat conditions. This study explores the role of phenotypic plasticity, in both vegetative and reproductive traits, of an invasive plant Mikania micrantha growing as a ground cover in diverse urban areas in the city of Kolkata, India. Quadrat based plant and soil sampling was conducted in three habitat types, namely roadsides, natural areas and abandoned plots, from four regions within the city. The above ground biomass and fitness related vegetative and seed traits were estimated from the plant samples whereas soil macro-and micro-nutrients as well as soil health (in terms of organic carbon and microbial biomass carbon) were estimated from the soil samples. Habitat-specific selection of traits in M. micrantha was observed in this study. In roadside population which has more chances of long distance dispersal, the excessive production of reproductive biomass as a compensatory response to the low germination ability of the seeds was evident. In natural areas which are more prone to anthropogenic disturbance and where the plant has greater chances of local spread, modulation of both vegetative (higher SLA) and reproductive traits (lighter seeds with faster germination ability) helped the plant to maintain its population. In abandoned plots where there was more number of associated species, the longer span of germination and increased population height ensured the survivability of M. micrantha in the community. Thus, a continuous monitoring program to check for M. micrantha growth should be prioritized in urban areas due to its immense trait plasticity in different habitat conditions where uncontrolled growth can lead to its establishment and spread, thereby making its control more difficult.展开更多
Freshwaters are not only used locally in many developing countries but they are often over exploited for domestic purposes, agriculture and disposal of industrial wastes which result in an overload of excess nutrients...Freshwaters are not only used locally in many developing countries but they are often over exploited for domestic purposes, agriculture and disposal of industrial wastes which result in an overload of excess nutrients, harmful chemicals and heavy metals. Plant species together with sediments and water samples collected from eleven aquatic water bodies in the vicinity of industrial units in Kolkata were studied for their potential to uptake Pb, Cd and Cr under field conditions. Cd and Cr concentrations in the sediments were higher than background values considered to be toxic. Alternanthera philoxeroides and Eichhornia crassipes were the two invasive species present, with the former being more widely distributed. Among native plants, Ipomoea aquatica was the most abundant. Metal uptake in the plants differed among species, tissues and sites. Pb and Cd accumulation in root tissues for all plants in most sites suggested an exclusion strategy for metal tolerance. Since I. aquatica is widely consumed in many parts of SE Asia, its metal content should be checked before use since it was found to efficiently translocate both Pb and Cd from roots to shoots. The potential of A. philoxeroides as a metal excluder needs to be explored further since it translocates less to its shoots as compared to E. crassipes and I. aquatica.展开更多
文摘Urbanization contributes to extensive land use changes and environmental degradation which may influence changes in soil properties. These abiotic changes may aggravate invasions and favour the distribution and number of invasive species in urban areas which could negatively impact biodiversity. This case study was, therefore, undertaken in the metropolitan city of Kolkata to assess the existing plant species richness (both native and exotic) and to determine the relative role of some soil physico-chemical parameters on species richness. Plant species were recorded and soil samples were collected from each study site. The total species richness ranged from 4 to 25 with 50% of sites having a median number of 11 species. The presence of at least 3 or more invasive species was observed in >80% of sites. The mean and median values of soil parameters showed considerable variation in soil properties between sites. Urban soils had elevated pH values and higher available N, P and Ca. Soil available N appeared to be significantly correlated with both total species and exotic (including invasive) species richness while available phosphorus showed significant correlation with only exotic species richness. The GLM Poisson log-linear models showed a significant positive relationship of soil N with total species richness and exotic richness including invasive species richness in the study area.
文摘The successful establishment of an invasive plant in a novel environment has been attributed to the phenotypic plasticity of plant traits, with most studies focussing on vegetative trait plasticity in either experimental and/or natural habitat conditions. This study explores the role of phenotypic plasticity, in both vegetative and reproductive traits, of an invasive plant Mikania micrantha growing as a ground cover in diverse urban areas in the city of Kolkata, India. Quadrat based plant and soil sampling was conducted in three habitat types, namely roadsides, natural areas and abandoned plots, from four regions within the city. The above ground biomass and fitness related vegetative and seed traits were estimated from the plant samples whereas soil macro-and micro-nutrients as well as soil health (in terms of organic carbon and microbial biomass carbon) were estimated from the soil samples. Habitat-specific selection of traits in M. micrantha was observed in this study. In roadside population which has more chances of long distance dispersal, the excessive production of reproductive biomass as a compensatory response to the low germination ability of the seeds was evident. In natural areas which are more prone to anthropogenic disturbance and where the plant has greater chances of local spread, modulation of both vegetative (higher SLA) and reproductive traits (lighter seeds with faster germination ability) helped the plant to maintain its population. In abandoned plots where there was more number of associated species, the longer span of germination and increased population height ensured the survivability of M. micrantha in the community. Thus, a continuous monitoring program to check for M. micrantha growth should be prioritized in urban areas due to its immense trait plasticity in different habitat conditions where uncontrolled growth can lead to its establishment and spread, thereby making its control more difficult.
文摘Freshwaters are not only used locally in many developing countries but they are often over exploited for domestic purposes, agriculture and disposal of industrial wastes which result in an overload of excess nutrients, harmful chemicals and heavy metals. Plant species together with sediments and water samples collected from eleven aquatic water bodies in the vicinity of industrial units in Kolkata were studied for their potential to uptake Pb, Cd and Cr under field conditions. Cd and Cr concentrations in the sediments were higher than background values considered to be toxic. Alternanthera philoxeroides and Eichhornia crassipes were the two invasive species present, with the former being more widely distributed. Among native plants, Ipomoea aquatica was the most abundant. Metal uptake in the plants differed among species, tissues and sites. Pb and Cd accumulation in root tissues for all plants in most sites suggested an exclusion strategy for metal tolerance. Since I. aquatica is widely consumed in many parts of SE Asia, its metal content should be checked before use since it was found to efficiently translocate both Pb and Cd from roots to shoots. The potential of A. philoxeroides as a metal excluder needs to be explored further since it translocates less to its shoots as compared to E. crassipes and I. aquatica.