Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation an...Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation and subsequent calcination.The as-obtained heterogeneous Pd catalyst afforded not only excellent selectivity to glyceric acid(GLA)up to 90%with 59%conversion of glycerol but also good recyclability by using molecular oxygen as an oxidant under mild conditions.The characterization of catalysts indicated that both the surface basicity and Pd sites on the catalyst played a crucial role in promoting glycerol oxidation.Notably,it demonstrated that the presence of the vicinal hydroxyl group of glycerol molecule can assist the oxidation reaction via forming a coordination between the vicinal hydroxyl group and Ca^(2+) sites on HAP-derived catalysts.In this catalytic process,the secondary hydroxyl of glycerol kept untouched and the primary hydroxyl of glycerol was converted into carboxyl group,while the Pd species acted as active centers for cooperatively promoting the subsequent oxidation to generate GLA.Additionally,this catalytic system can be extended widely for the oxidative conversion of other vicinal diols into the corresponding a-hydroxycarboxylic acids selectively.Isotope labeling experiment using H_(2)^(18)O confirmed that H_(2)O not only acted as solvent but also was involved in the catalytic cycles.On the basis of the results,a possible reaction mechanism has been proposed.The HAP-supported Pd catalytic system has been shown to serve as an effective approach for the upgrading of bio-derived vicinal diols to high value-added chemicals.展开更多
This work confirmed a novel ligand in the anionic polymerization,lithium phenoxide,which helped to improve the controllability of the polymerization.The stability of n-BuLi against THF at 0℃ was effectively improved ...This work confirmed a novel ligand in the anionic polymerization,lithium phenoxide,which helped to improve the controllability of the polymerization.The stability of n-BuLi against THF at 0℃ was effectively improved by adding lithium phenoxide.More than 60%n-BuLi in THF was alive with the presence of lithium phenoxide after stirring at 0℃ for 20 min,compared to 2%under same conditions but without lithium phenoxide.The propagation of polymerization of styrene(St)and methyl methacrylate(MMA)were retarded after adding lithium phenoxide.And by adding more than 10 fold lithium phenoxide,completed conversion was achieved in the polymerization of MMA in THF at 0℃.The lithium phenoxide showed both promoting and inhibiting effects in the polymerization of isoprene(Ip):it promoted the formation of 3,4-structure,while mitigated the formation of 1,2-and 1,4-structures.In general,the polymerization rate of Ip was promoted by lithium phenoxide.展开更多
It still remains a concern to break through the bottlenecks of anionic polymerization of polar monomers, such as side reactions, low conver- sion and low temperature (-78 ℃). In this work, potassium tert-butoxide ...It still remains a concern to break through the bottlenecks of anionic polymerization of polar monomers, such as side reactions, low conver- sion and low temperature (-78 ℃). In this work, potassium tert-butoxide (t-BuOK) was chosen to initiate the anionic polymerization of 2-ethylhexyl methacrylate (EHMA) in tetrahydrofuran. The conversions were above 99% at 0 or 30 ℃, and above 95% at 60 ℃ without side reaction inhibitors. The high conversions implied t-BuOK could suppress the side reactions. A series of block copolymers of EHMA, n-hexyl methacrylate (HMA) and methyl methacrylate (MMA) were further synthesized at 0 ℃, and the conversions were all above 99%. The GPC and IH NMR results confirmed the successful synthesis of the block copolymers. The molecular size of monomer and the state of t-BuOK (free ion pairs or aggregates) remarkably affected the polymerization rates and the molecular structures of the products. The DMA results indicated that the glass transition temperatures of PEHMA or PHMA block and PMMA block were 20 ℃ and 60 ℃, respectively, which deviated from -2 ℃ and 105 ℃ of homopolymer, respectively, due to the partial com- patibility of the blocks. This work explored a route of the anionic polymerization of polar monomers at room temperature.展开更多
基金support from the National Natural Science Foundation of China(21773061,21978095)Innovation Program of Shanghai Municipal Education Commission(15ZZ031)the Fundamental Research Funds for the Central Universities。
文摘Selective oxidation of glycerol provides a feasible route towards the sustainable synthesis of high value-added chemicals.Herein,the hydroxyapatite(HAP)supported palladium(Pd)species were fabricated by impregnation and subsequent calcination.The as-obtained heterogeneous Pd catalyst afforded not only excellent selectivity to glyceric acid(GLA)up to 90%with 59%conversion of glycerol but also good recyclability by using molecular oxygen as an oxidant under mild conditions.The characterization of catalysts indicated that both the surface basicity and Pd sites on the catalyst played a crucial role in promoting glycerol oxidation.Notably,it demonstrated that the presence of the vicinal hydroxyl group of glycerol molecule can assist the oxidation reaction via forming a coordination between the vicinal hydroxyl group and Ca^(2+) sites on HAP-derived catalysts.In this catalytic process,the secondary hydroxyl of glycerol kept untouched and the primary hydroxyl of glycerol was converted into carboxyl group,while the Pd species acted as active centers for cooperatively promoting the subsequent oxidation to generate GLA.Additionally,this catalytic system can be extended widely for the oxidative conversion of other vicinal diols into the corresponding a-hydroxycarboxylic acids selectively.Isotope labeling experiment using H_(2)^(18)O confirmed that H_(2)O not only acted as solvent but also was involved in the catalytic cycles.On the basis of the results,a possible reaction mechanism has been proposed.The HAP-supported Pd catalytic system has been shown to serve as an effective approach for the upgrading of bio-derived vicinal diols to high value-added chemicals.
基金Financial supports for this work from the Natural Science Foundation of China for the Major Program(No.50933002)the National High Technology Research and Development Program of China(863 Program,No.2012AA040306)Shanghai Leading Academic Discipline Project(No.B502)are gratefully acknowledged.
文摘This work confirmed a novel ligand in the anionic polymerization,lithium phenoxide,which helped to improve the controllability of the polymerization.The stability of n-BuLi against THF at 0℃ was effectively improved by adding lithium phenoxide.More than 60%n-BuLi in THF was alive with the presence of lithium phenoxide after stirring at 0℃ for 20 min,compared to 2%under same conditions but without lithium phenoxide.The propagation of polymerization of styrene(St)and methyl methacrylate(MMA)were retarded after adding lithium phenoxide.And by adding more than 10 fold lithium phenoxide,completed conversion was achieved in the polymerization of MMA in THF at 0℃.The lithium phenoxide showed both promoting and inhibiting effects in the polymerization of isoprene(Ip):it promoted the formation of 3,4-structure,while mitigated the formation of 1,2-and 1,4-structures.In general,the polymerization rate of Ip was promoted by lithium phenoxide.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 50933002, 51373052, 51573043).
文摘It still remains a concern to break through the bottlenecks of anionic polymerization of polar monomers, such as side reactions, low conver- sion and low temperature (-78 ℃). In this work, potassium tert-butoxide (t-BuOK) was chosen to initiate the anionic polymerization of 2-ethylhexyl methacrylate (EHMA) in tetrahydrofuran. The conversions were above 99% at 0 or 30 ℃, and above 95% at 60 ℃ without side reaction inhibitors. The high conversions implied t-BuOK could suppress the side reactions. A series of block copolymers of EHMA, n-hexyl methacrylate (HMA) and methyl methacrylate (MMA) were further synthesized at 0 ℃, and the conversions were all above 99%. The GPC and IH NMR results confirmed the successful synthesis of the block copolymers. The molecular size of monomer and the state of t-BuOK (free ion pairs or aggregates) remarkably affected the polymerization rates and the molecular structures of the products. The DMA results indicated that the glass transition temperatures of PEHMA or PHMA block and PMMA block were 20 ℃ and 60 ℃, respectively, which deviated from -2 ℃ and 105 ℃ of homopolymer, respectively, due to the partial com- patibility of the blocks. This work explored a route of the anionic polymerization of polar monomers at room temperature.