Background In the current context of global warming,thermal manipulation of avian embryos has received increasing attention as a strategy to promote heat tolerance in avian species by simply increasing the egg incubat...Background In the current context of global warming,thermal manipulation of avian embryos has received increasing attention as a strategy to promote heat tolerance in avian species by simply increasing the egg incubation temperature.However,because of their likely epigenetic origin,thermal manipulation effects may last more than one generation with consequences for the poultry industry.In this work,a multigenerational and transgenerational analysis of thermal manipulation during embryogenesis was performed to uncover the long-term effects of such procedure.Results Thermal manipulation repeated during 4 generations had an effect on hatchability,body weight,and weight of eggs laid in Japanese quails,with some effects increasing in importance over generations.Moreover,the effects on body weight and egg weight could be transmitted transgenerationally,suggesting non-genetic inheritance mechanisms.This hypothesis is reinforced by the observed reversion of the effect on growth after five unexposed generations.Interestingly,a beneficial effect of thermal manipulation on heat tolerance was observed a few days after hatching,but this effect was not transgenerational.Conclusions Our multigenerational study showed that thermal conditioning of quail embryos has a beneficial effect on post-hatch heat tolerance hampered by transgenerational but reversible defects on growth.Assuming that no genetic variability underlies these changes,this study provides the first demonstration of epigenetic inheritance of traits induced by environmental temperature modification associated with long-term impacts in an avian species.展开更多
Background: Negative experiences in early life can induce long-lasting effects on the welfare, health, and performance of farm animals. A delayed placement of chicks in rearing houses has negative effects on their per...Background: Negative experiences in early life can induce long-lasting effects on the welfare, health, and performance of farm animals. A delayed placement of chicks in rearing houses has negative effects on their performance, and results in fecal-specific odors detectable by rats. Based on this observation, the volatile organic compounds(VOCs) and metabolites from the feces of 12-day-old chickens were screened for early markers of response to negative events using gas-chromatography and liquid-chromatography coupled with mass spectrometry(GC-MS, LC-HRMS).Results: The low reproducibility of solid-phase micro-extraction of the VOCs followed by GC-MS was not suitable for marker discovery, in contrast to liquid extraction of metabolites from freeze-dried feces followed by GC-MS or LC-HRMS analysis. Therefore, the fecal metabolome from 12-day-old chicks having experienced a normal or delayed placement were recorded by GC-MS and LC-HRMS in two genotypes from two experiments. From both experiments, 25 and 35 metabolites, respectively explaining 81% and 45% of the difference between delayed and control chickens, were identified by orthogonal partial least-squares discriminant analysis from LC-HRMS and GC-MS profiling.Conclusion: The sets of molecules identified will be useful to better understand the chicks’ response to negative events over time and will contribute to define stress or welfare biomarkers.展开更多
文摘Background In the current context of global warming,thermal manipulation of avian embryos has received increasing attention as a strategy to promote heat tolerance in avian species by simply increasing the egg incubation temperature.However,because of their likely epigenetic origin,thermal manipulation effects may last more than one generation with consequences for the poultry industry.In this work,a multigenerational and transgenerational analysis of thermal manipulation during embryogenesis was performed to uncover the long-term effects of such procedure.Results Thermal manipulation repeated during 4 generations had an effect on hatchability,body weight,and weight of eggs laid in Japanese quails,with some effects increasing in importance over generations.Moreover,the effects on body weight and egg weight could be transmitted transgenerationally,suggesting non-genetic inheritance mechanisms.This hypothesis is reinforced by the observed reversion of the effect on growth after five unexposed generations.Interestingly,a beneficial effect of thermal manipulation on heat tolerance was observed a few days after hatching,but this effect was not transgenerational.Conclusions Our multigenerational study showed that thermal conditioning of quail embryos has a beneficial effect on post-hatch heat tolerance hampered by transgenerational but reversible defects on growth.Assuming that no genetic variability underlies these changes,this study provides the first demonstration of epigenetic inheritance of traits induced by environmental temperature modification associated with long-term impacts in an avian species.
基金supported financially by a “crédits incitatifs” grant from the department of Animal Physiology and Livestock Systems(PHASE)at INRAa grant from the Integrated Management of Animal Health metaprogram of INRA for the “GISA-WHELP” project(www.gisa.inra.fr/en)
文摘Background: Negative experiences in early life can induce long-lasting effects on the welfare, health, and performance of farm animals. A delayed placement of chicks in rearing houses has negative effects on their performance, and results in fecal-specific odors detectable by rats. Based on this observation, the volatile organic compounds(VOCs) and metabolites from the feces of 12-day-old chickens were screened for early markers of response to negative events using gas-chromatography and liquid-chromatography coupled with mass spectrometry(GC-MS, LC-HRMS).Results: The low reproducibility of solid-phase micro-extraction of the VOCs followed by GC-MS was not suitable for marker discovery, in contrast to liquid extraction of metabolites from freeze-dried feces followed by GC-MS or LC-HRMS analysis. Therefore, the fecal metabolome from 12-day-old chicks having experienced a normal or delayed placement were recorded by GC-MS and LC-HRMS in two genotypes from two experiments. From both experiments, 25 and 35 metabolites, respectively explaining 81% and 45% of the difference between delayed and control chickens, were identified by orthogonal partial least-squares discriminant analysis from LC-HRMS and GC-MS profiling.Conclusion: The sets of molecules identified will be useful to better understand the chicks’ response to negative events over time and will contribute to define stress or welfare biomarkers.