The arachidonic acid (AA) pathway produces several essential proinflammatory eicosanoids. However, in many neurodegenerative diseases, e.g. Alzheimer’s disease (AD), this pathway is chronically hyperactivated. In bra...The arachidonic acid (AA) pathway produces several essential proinflammatory eicosanoids. However, in many neurodegenerative diseases, e.g. Alzheimer’s disease (AD), this pathway is chronically hyperactivated. In brain, primarily monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to AA, which is further metabolized to generate many proinflammatory eicosanoids. MAGL inhibition, simultaneously reducing the level of eicosanoids and increasing those of neuroprotective endocannabinoids, has proved efficacious in some AD models, reducing neurotoxic β-amyloid (Aβ) levels and improving memory functions. Here, a MAGL inhibitor, JZL184 was chronically administered (16 mg/kg, i.p., 3 x/wk for 5 mo) for 1 - 1.5 mo and 7 - 8 mo old transgenic (TG) and wild-type (WT) APP/PS1-21 mice modelling cerebral amyloidosis. According to immunohistochemistry, JZL184 significantly increased the expression levels of cannabinoid receptor 1 in older WT and younger TG and WT mice, decreased cannabinoid receptor 2 and oligomeric Aβ in older and younger TG mice and decreased microglia-specific marker Iba1 in younger TG mice, compared to TG mice treated with vehicle only. However, in the Morris Water Maze test, spatial memory functions improved significantly only in younger TG and WT mice, compared to vehicle-treated littermates. These tentative results suggest that chronic, rather long-term MAGL inhibition can decelerate pathological changes in TG APP/PS1-21 mice but it improves memory functions only when administered at an early stage of the展开更多
文摘The arachidonic acid (AA) pathway produces several essential proinflammatory eicosanoids. However, in many neurodegenerative diseases, e.g. Alzheimer’s disease (AD), this pathway is chronically hyperactivated. In brain, primarily monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to AA, which is further metabolized to generate many proinflammatory eicosanoids. MAGL inhibition, simultaneously reducing the level of eicosanoids and increasing those of neuroprotective endocannabinoids, has proved efficacious in some AD models, reducing neurotoxic β-amyloid (Aβ) levels and improving memory functions. Here, a MAGL inhibitor, JZL184 was chronically administered (16 mg/kg, i.p., 3 x/wk for 5 mo) for 1 - 1.5 mo and 7 - 8 mo old transgenic (TG) and wild-type (WT) APP/PS1-21 mice modelling cerebral amyloidosis. According to immunohistochemistry, JZL184 significantly increased the expression levels of cannabinoid receptor 1 in older WT and younger TG and WT mice, decreased cannabinoid receptor 2 and oligomeric Aβ in older and younger TG mice and decreased microglia-specific marker Iba1 in younger TG mice, compared to TG mice treated with vehicle only. However, in the Morris Water Maze test, spatial memory functions improved significantly only in younger TG and WT mice, compared to vehicle-treated littermates. These tentative results suggest that chronic, rather long-term MAGL inhibition can decelerate pathological changes in TG APP/PS1-21 mice but it improves memory functions only when administered at an early stage of the