期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Separation control using synthetic vortex generator jets in axial compressor cascade 被引量:11
1
作者 Xinqian Zheng Sheng Zhou +2 位作者 anping hou Zhengli Jiang Daijun Ling 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期521-527,共7页
An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic (zero mass flux) vortex generator jets can effectively improve the aerodyn... An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic (zero mass flux) vortex generator jets can effectively improve the aerodynamic performances and reduce (or eliminate) flow separation in axial compressor cascade. The Mach number of the incoming flow is up to 0.7 and most tested cases are at Ma = 0.3. The incidence is 10° at which the boundary layer is separated from 70% of the chord length. The roles of excitation frequency, amplitude, location and pitch angle are investigated. Preliminary results show that the excitation amplitude plays a very important role, the optimal excitation location is just upstream of the separation point, and the optimal pitch angle is 35°. The maximum relative reduction of loss coefficient is 22.8%. 展开更多
关键词 Flow control COMPRESSOR Synthetic jet
下载PDF
Aerodynamic system instability identification with sample entropy algorithm based on feature extraction
2
作者 Mingming Zhang Jia Zhang +3 位作者 anping hou Aiguo Xia Wei Tuo Yongzhao Lv 《Propulsion and Power Research》 SCIE 2023年第1期138-152,共15页
Based on the sample entropy algorithm in nonlinear dynamics,an improved sample entropy method is proposed in the aerodynamic system instability identification for the stall precursor detection based on the nonlinear f... Based on the sample entropy algorithm in nonlinear dynamics,an improved sample entropy method is proposed in the aerodynamic system instability identification for the stall precursor detection based on the nonlinear feature extraction algorithm in an axial compressor.The sample entropy algorithm is an improved algorithm based on the approximate entropy algorithm,which quantifies the regularity and the predictability of data in time series.Combined with the spatial modes representing for the rotating stall in the circumferential direction,the recognition capacity of the sample entropy is displayed well on the detection of stall inception.The indications of rotating waves are extracted by the circumferential analysis from modal wave energy.The significant ascendant in the amplitude of the spatial mode is a pronounced feature well before the imminence of stall.Data processing with the spatial mode effectively avoids the problems of inaccurate identification of a single measuring point only depending on pressure.Due to the different selections of similarity tolerance,two kinds of sample entropy are obtained.The properties of the development process of the identification model show obvious mutation phenomena at the boundary of instability,which reveal the inherent characteristic in aerodynamic system.Then the dynamic difference quotient is computed according to the difference quotient criterion,after the smooth management by discrete wavelet.The rapid increase of difference quotient can be regarded as a significant feature of the system approaching the flow instability.It is proven that based on the principle of sample entropy algorithm,the nonlinear characteristic of rotating stall can be well described.The inception can be suggested by about 12-68 revolutions before the stall arrival.This prediction method presenting is accounted for the nonlinearity of the complex flow in stall,which is in a view of data fusion system of pressure for the spatial mode tracking. 展开更多
关键词 Sample entropy algorithm Spatial mode Data fusion Inception identification Nonlinear dynamics
原文传递
Unsteady cooperative flow in compression system 被引量:2
3
作者 Sheng Zhou Yajun Lu +2 位作者 anping hou Wei Yuan Zhiping Li 《Propulsion and Power Research》 SCIE 2012年第1期12-28,共17页
When there are several bodies with relative motion in a flow field,such as the flow in the compression system of modern aero-engine,the flow field will have certain special features,one of which is that the time-space... When there are several bodies with relative motion in a flow field,such as the flow in the compression system of modern aero-engine,the flow field will have certain special features,one of which is that the time-space structure of such multi-bodies unsteady vorticity flow field would be either of unsteady natural flow(UNF)pattern or of unsteady cooperative flow(UCF)pattern.If we further examine the aerodynamic design system of aero-engine,there is no mechanism for the unsteady cooperative flow to occur,in other words the flow field must be of the unsteady natural flow type.If certain technical measures can be adopted to transform UNF into UCF,the aerodynamic performances will surely be improved.This is the main task the author and their colleague have been devoted to and the results are reviewed in the present paper with emphases laid on basic ideas,technical approaches and experimental verifications. 展开更多
关键词 Unsteady cooperative flow Unsteady natural flow Time-space structure of the flow field Compression system AERO-ENGINE Flow over multibodies Asymmetric flow Axial compressor transonic flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部