Let SE denote the least-squares symmetric solution set of the matrix equation A×B = C, where A, B and C are given matrices of suitable size. To find the optimal approximate solution in the set SE to a given matri...Let SE denote the least-squares symmetric solution set of the matrix equation A×B = C, where A, B and C are given matrices of suitable size. To find the optimal approximate solution in the set SE to a given matrix, we give a new feasible method based on the projection theorem, the generalized SVD and the canonical correction decomposition.展开更多
基金The work of this author was supported in part by Natural Science Foundation of Hunan Province (No. 03JJY6028).
文摘Let SE denote the least-squares symmetric solution set of the matrix equation A×B = C, where A, B and C are given matrices of suitable size. To find the optimal approximate solution in the set SE to a given matrix, we give a new feasible method based on the projection theorem, the generalized SVD and the canonical correction decomposition.