Three experiments were conducted to evaluate direct-fed microbial (<strong>DFM</strong>) supplementation on live performance, carcass characteristics, and fecal shedding of <em>E. coli</em> in ...Three experiments were conducted to evaluate direct-fed microbial (<strong>DFM</strong>) supplementation on live performance, carcass characteristics, and fecal shedding of <em>E. coli</em> in feedlot steers. In Exp. 1, 400 steers (BW = 348 kg) were assigned to treatments: <strong>CON</strong> = lactose carrier only, <strong>BOV</strong> =<em> P. freudenreichii </em>(NP24) +<em> L. acidophilus</em> (NP51), <strong>BOVD</strong> = <em>P. freudenreichii</em> (NP24) +<em> L. acidophilus</em> (NP51), and <strong>COMB</strong> = BOV fed for the first 101 d on feed, followed by BOVD for the final 28 d prior to harvest. In Exp. 2 (n = 1800;BW = 354 kg) and Exp. 3 (n = 112;BW = 397 kg), steers were utilized in a randomized complete block design and assigned to DFM treatments using low dose and high dose, respectively. Fecal samples were collected prior to harvest and analyzed for <em>E. coli</em> serogroups. In Exp. 1, DFM reduced (P < 0.01) the concentration of<em> E. coli</em> O157. Prevalence of O157 was reduced by BOVD supplementation in Exp. 2 and 3 (P < 0.01 and P = 0.08, respectively), and concentration of <em>E. coli</em> O157 in positive samples was reduced in both experiments where enumeration was performed (P ≤ 0.02). Weighted mean differences across the three experiments were equal to a 33% reduction in the prevalence of E. coli O157:H7 in BOVD treated cattle. A significant reduction in prevalence of O26, O45, O103, and O121 was observed in Exp. 2 (P ≤ 0.03). These results indicate that high levels of <em>L. acidophilus</em> (NP51) may represent an effective pre-harvest food safety intervention to reduce fecal shedding of several <em>E. coli</em> serogroups.展开更多
文摘Three experiments were conducted to evaluate direct-fed microbial (<strong>DFM</strong>) supplementation on live performance, carcass characteristics, and fecal shedding of <em>E. coli</em> in feedlot steers. In Exp. 1, 400 steers (BW = 348 kg) were assigned to treatments: <strong>CON</strong> = lactose carrier only, <strong>BOV</strong> =<em> P. freudenreichii </em>(NP24) +<em> L. acidophilus</em> (NP51), <strong>BOVD</strong> = <em>P. freudenreichii</em> (NP24) +<em> L. acidophilus</em> (NP51), and <strong>COMB</strong> = BOV fed for the first 101 d on feed, followed by BOVD for the final 28 d prior to harvest. In Exp. 2 (n = 1800;BW = 354 kg) and Exp. 3 (n = 112;BW = 397 kg), steers were utilized in a randomized complete block design and assigned to DFM treatments using low dose and high dose, respectively. Fecal samples were collected prior to harvest and analyzed for <em>E. coli</em> serogroups. In Exp. 1, DFM reduced (P < 0.01) the concentration of<em> E. coli</em> O157. Prevalence of O157 was reduced by BOVD supplementation in Exp. 2 and 3 (P < 0.01 and P = 0.08, respectively), and concentration of <em>E. coli</em> O157 in positive samples was reduced in both experiments where enumeration was performed (P ≤ 0.02). Weighted mean differences across the three experiments were equal to a 33% reduction in the prevalence of E. coli O157:H7 in BOVD treated cattle. A significant reduction in prevalence of O26, O45, O103, and O121 was observed in Exp. 2 (P ≤ 0.03). These results indicate that high levels of <em>L. acidophilus</em> (NP51) may represent an effective pre-harvest food safety intervention to reduce fecal shedding of several <em>E. coli</em> serogroups.