Many studies show that semi-arid rangelands throughout the world have been rapidly converted from a grassland state to a bush encroachment state during the past 50 years. Bush encroachment includes the spread of local...Many studies show that semi-arid rangelands throughout the world have been rapidly converted from a grassland state to a bush encroachment state during the past 50 years. Bush encroachment includes the spread of local woody species and/or incursion of woody species introduced from other ecosystems into semi-arid savannas and grassland ecosystems. Rangeland degradation due to bush encroachment causes several challenges, affecting the production of livestock and pastoral people livelihoods in most parts of Africa. Scientists have long been attempting to develop schematic and mathematical theories to explain the observed phenomenon of bush encroachment, and several theories were proposed and developed. The well-regarded theories include: (1) Waiter's two-layer model, (2) Moir's one-layer model, (3) state-and-transition theory, (4) equilibrium theory, (5) disequilibrium theory, and (6) non-equilibrium theory. Within those theories, the most frequently-indicated driving factors that explain bush encroachment include over-grazing, availability of soil nutrient and moisture, elevated CO2 levels, frequency and intensity of fire, spread of seeds of woody species by livestock and wild animals. It should be stressed that couplings and interactions among diverse driving factors are more often at work in determining the condition of bush encroachment. To summarize, the effort in managing semi-arid ecosystems needs critical knowledge to understand the cause-effect relationships of underlying factors through integrated approach. Therefore, future research on encroachment of woody plants should be multi-discipline oriented and multi-partnership involved.展开更多
Background:Current theories on biodiversity-carbon sequestration relationship describe biodiversity as an important factor influencing carbon storage,either through complementarity effect or by mass ratio effect.So fa...Background:Current theories on biodiversity-carbon sequestration relationship describe biodiversity as an important factor influencing carbon storage,either through complementarity effect or by mass ratio effect.So far,the expected form of biodiversity-carbon relationships in tropical ecosystems has not been known with certainty.Therefore,we explored the relationship between aboveground carbon stock and different biodiversity measurement indices(i.e.,species richness,species diversity,species evenness,and functional diversity)in different land cover types of Eastern Ethiopia.A total of 48 plots were established using stratified random sampling.Vegetation parameters such as diameter at breast height,diameter at stump height,tree height,and species type were recorded.Results:We found that the average aboveground carbon stock of the study area is 147.6±17.2 t ha^(−1)(mean,SE)across land cover types.Species richness,Shannon index,and functional diversity together explained 73.5%,61.4%,58.9%,and 52.0%of the variation in aboveground carbon storage in woodland,riparian forest,bushland,and farmland,respectively.Functional diversity was a significant predictor explaining the total aboveground carbon stocks(26.7%)across the land cover types.The effects of biodiversity on aboveground carbon storage were mediated by functional diversity and presence and dominance of species.This shows that both the selection effects and the niche complementarity are important for carbon storage.However,the impact of functional diversity effects(niche complementarity)was higher than that of functional dominance effects(selection effects).Conclusions:Implementation of protected area-based ecosystem conservation practices in the country seems feasible to mitigate climate change and Reducing Emissions from Deforestation and Forest Degradation(REDD+)programme should emphasize on biodiversity conservation.展开更多
文摘Many studies show that semi-arid rangelands throughout the world have been rapidly converted from a grassland state to a bush encroachment state during the past 50 years. Bush encroachment includes the spread of local woody species and/or incursion of woody species introduced from other ecosystems into semi-arid savannas and grassland ecosystems. Rangeland degradation due to bush encroachment causes several challenges, affecting the production of livestock and pastoral people livelihoods in most parts of Africa. Scientists have long been attempting to develop schematic and mathematical theories to explain the observed phenomenon of bush encroachment, and several theories were proposed and developed. The well-regarded theories include: (1) Waiter's two-layer model, (2) Moir's one-layer model, (3) state-and-transition theory, (4) equilibrium theory, (5) disequilibrium theory, and (6) non-equilibrium theory. Within those theories, the most frequently-indicated driving factors that explain bush encroachment include over-grazing, availability of soil nutrient and moisture, elevated CO2 levels, frequency and intensity of fire, spread of seeds of woody species by livestock and wild animals. It should be stressed that couplings and interactions among diverse driving factors are more often at work in determining the condition of bush encroachment. To summarize, the effort in managing semi-arid ecosystems needs critical knowledge to understand the cause-effect relationships of underlying factors through integrated approach. Therefore, future research on encroachment of woody plants should be multi-discipline oriented and multi-partnership involved.
文摘Background:Current theories on biodiversity-carbon sequestration relationship describe biodiversity as an important factor influencing carbon storage,either through complementarity effect or by mass ratio effect.So far,the expected form of biodiversity-carbon relationships in tropical ecosystems has not been known with certainty.Therefore,we explored the relationship between aboveground carbon stock and different biodiversity measurement indices(i.e.,species richness,species diversity,species evenness,and functional diversity)in different land cover types of Eastern Ethiopia.A total of 48 plots were established using stratified random sampling.Vegetation parameters such as diameter at breast height,diameter at stump height,tree height,and species type were recorded.Results:We found that the average aboveground carbon stock of the study area is 147.6±17.2 t ha^(−1)(mean,SE)across land cover types.Species richness,Shannon index,and functional diversity together explained 73.5%,61.4%,58.9%,and 52.0%of the variation in aboveground carbon storage in woodland,riparian forest,bushland,and farmland,respectively.Functional diversity was a significant predictor explaining the total aboveground carbon stocks(26.7%)across the land cover types.The effects of biodiversity on aboveground carbon storage were mediated by functional diversity and presence and dominance of species.This shows that both the selection effects and the niche complementarity are important for carbon storage.However,the impact of functional diversity effects(niche complementarity)was higher than that of functional dominance effects(selection effects).Conclusions:Implementation of protected area-based ecosystem conservation practices in the country seems feasible to mitigate climate change and Reducing Emissions from Deforestation and Forest Degradation(REDD+)programme should emphasize on biodiversity conservation.