Sustainable ammonia synthesis at ambient conditions that relies on renewable sources of energy and feedstocks is globally sought to replace the Haber-Bosch process.Here,using nitrogen and water as raw materials,a nont...Sustainable ammonia synthesis at ambient conditions that relies on renewable sources of energy and feedstocks is globally sought to replace the Haber-Bosch process.Here,using nitrogen and water as raw materials,a nonthermal plasma catalysis approach is demonstrated as an effective powerto-chemicals conversion strategy for ammonia production.By sustaining a highly reactive environment,successful plasma-catalytic production of NH_(3) was achieved from the dissociation of N_(2) and H_(2)O under mild conditions.Plasma-induced vibrational excitation is found to decrease the N_(2) and H_(2)O dissociation barriers,with the presence of matched catalysts in the nonthermal plasma discharge reactor contributing significantly to molecular dissociation on the catalyst surface.Density functional theory calculations for the activation energy barrier for the dissociation suggest that ruthenium catalysts supported on magnesium oxide exhibit superior performance over other catalysts in NH_(3) production by lowering the activation energy for the dissociative adsorption of N_(2) down to 1.07 eV.The highest production rate,2.67 mmol gcat.^(-1) h^(-1),was obtained using ruthenium catalyst supported on magnesium oxide.This work highlights the potential of nonthermal plasma catalysis for the activation of renewable sources to serve as a new platform for sustainable ammonia production.展开更多
This paper mainly focuses on the influence of three kinds of media: air, air-10%PA (Nylon) and air-10% POM (polyoxymethylene) on low-voltage circuit breaker arcs. A threedimensional (3-D) model of arc motioa un...This paper mainly focuses on the influence of three kinds of media: air, air-10%PA (Nylon) and air-10% POM (polyoxymethylene) on low-voltage circuit breaker arcs. A threedimensional (3-D) model of arc motioa under the effect of external magnetic field is built based on magnetohydrodynamics (MHD) equations. By adopting the commercial computational fluid dynamics (CFD) package based on the control-volume method, the above MHD equations are solved. For the media of air-10%PA and air-10%POM, the distributions of stationary temperature and electrical potential and the transient motion processes are compared with those of air arc. The research shows that both air-10%PA and air -10% POM can cool the arc plasma and the former is more effective. Both of them can increase the stationary voltage as well. Moreover, the presence of the two mixtures can accelerate the arc motion toward the quenching area and ensures the arc quenched in time.展开更多
基金partially supported by the Australian Research Council(ARC)the National Science Fund for Distinguished Young Scholars(grant number 51925703)。
文摘Sustainable ammonia synthesis at ambient conditions that relies on renewable sources of energy and feedstocks is globally sought to replace the Haber-Bosch process.Here,using nitrogen and water as raw materials,a nonthermal plasma catalysis approach is demonstrated as an effective powerto-chemicals conversion strategy for ammonia production.By sustaining a highly reactive environment,successful plasma-catalytic production of NH_(3) was achieved from the dissociation of N_(2) and H_(2)O under mild conditions.Plasma-induced vibrational excitation is found to decrease the N_(2) and H_(2)O dissociation barriers,with the presence of matched catalysts in the nonthermal plasma discharge reactor contributing significantly to molecular dissociation on the catalyst surface.Density functional theory calculations for the activation energy barrier for the dissociation suggest that ruthenium catalysts supported on magnesium oxide exhibit superior performance over other catalysts in NH_(3) production by lowering the activation energy for the dissociative adsorption of N_(2) down to 1.07 eV.The highest production rate,2.67 mmol gcat.^(-1) h^(-1),was obtained using ruthenium catalyst supported on magnesium oxide.This work highlights the potential of nonthermal plasma catalysis for the activation of renewable sources to serve as a new platform for sustainable ammonia production.
基金supported by National Natural Science Foundation of China(No.50477025 and No.50537050)
文摘This paper mainly focuses on the influence of three kinds of media: air, air-10%PA (Nylon) and air-10% POM (polyoxymethylene) on low-voltage circuit breaker arcs. A threedimensional (3-D) model of arc motioa under the effect of external magnetic field is built based on magnetohydrodynamics (MHD) equations. By adopting the commercial computational fluid dynamics (CFD) package based on the control-volume method, the above MHD equations are solved. For the media of air-10%PA and air-10%POM, the distributions of stationary temperature and electrical potential and the transient motion processes are compared with those of air arc. The research shows that both air-10%PA and air -10% POM can cool the arc plasma and the former is more effective. Both of them can increase the stationary voltage as well. Moreover, the presence of the two mixtures can accelerate the arc motion toward the quenching area and ensures the arc quenched in time.