The crystallography of martensite formed in 0.2C-2.0Mn-1,5Si-0.6Cr steel was studied using the electron backscattered diffraction (EBSD) technique. The results showed that the observed orientation relationship (OR...The crystallography of martensite formed in 0.2C-2.0Mn-1,5Si-0.6Cr steel was studied using the electron backscattered diffraction (EBSD) technique. The results showed that the observed orientation relationship (OR) was closer to that of Nishiyama-Wassermann (N-W) than Kurdjumov-Sachs. The martensite consisted of parallel laths forming morphological packets. Typically, there were three different lath orientations in a morphological packet consisting of three specific N-W OR variants sharing the same {111} austenite plane. A packet of martensite laths with a common {111} austenite plane was termed a crystallographic packet. Generally, the crystallographic packet size corresponded to the morphological packet size, but occasionally the morphological packet was found to consist of two or more crystallographic packets. Therefore, the crystallographic packet size appeared to be finer than the morphological packet size. The relative orientation between the variants in crystallographic packets was found to be near 60°〈110〉, which explains the strong peak observed near 60° in the grain boundary misorientation distribution. Martensite also contained a high fraction of boundaries with a misorientation in the range 2.5-8°. Typically these boundaries were found to be located inside the martensite laths forming sub-laths.展开更多
The crystallography of bainite, transformed isothermally at 450 ℃ in 0.2C-2.0Mn-1.5Si-0.6Cr steel, was investigated by electron backscatter diffraction (EBSD) analysis. The orientation relationship (OR) was found...The crystallography of bainite, transformed isothermally at 450 ℃ in 0.2C-2.0Mn-1.5Si-0.6Cr steel, was investigated by electron backscatter diffraction (EBSD) analysis. The orientation relationship (OR) was found to be closer to Nishiyama-Wassermann (N-W) than Kurdjumov-Sachs orientation relationship. Bainite microstructure consisted of parallel laths forming a morphological packet structure. Typically, there were three different lath orientations in a morphological packet. These orientations were dictated by a three specific N-W OR variants sharing the same {111} austenite plane. A packet of bainite laths with common {111} austenite plane was termed as crystallographic packet. Generally, the crystallographic packet size corresponded to the morphological packet size. Locally, crystallographic packets with only two dominant orientations were observed. This indicates strong local variant selection during isothermal bainite transformation. The relative orientation between the variants in crystallographic packets was found to be near 60°/〈110〉. This appears to explain the strong peak observed in the grain boundary misorientation distribution near 60°. Bainite also contained pronounced fraction of boundaries with their misorientation in the range of 2.5°-8° with quite widely dispersed rotation angles. Spatially these boundaries were found to locate inside the bainite laths, forming lath-like sub-grains.展开更多
基金Funding from The Finnish Funding Agency for Technology and Innovation (Tekes) is gratefully acknowledged.(QaMiS project,No. 1691/31/07No. 40197/07)
文摘The crystallography of martensite formed in 0.2C-2.0Mn-1,5Si-0.6Cr steel was studied using the electron backscattered diffraction (EBSD) technique. The results showed that the observed orientation relationship (OR) was closer to that of Nishiyama-Wassermann (N-W) than Kurdjumov-Sachs. The martensite consisted of parallel laths forming morphological packets. Typically, there were three different lath orientations in a morphological packet consisting of three specific N-W OR variants sharing the same {111} austenite plane. A packet of martensite laths with a common {111} austenite plane was termed a crystallographic packet. Generally, the crystallographic packet size corresponded to the morphological packet size, but occasionally the morphological packet was found to consist of two or more crystallographic packets. Therefore, the crystallographic packet size appeared to be finer than the morphological packet size. The relative orientation between the variants in crystallographic packets was found to be near 60°〈110〉, which explains the strong peak observed near 60° in the grain boundary misorientation distribution. Martensite also contained a high fraction of boundaries with a misorientation in the range 2.5-8°. Typically these boundaries were found to be located inside the martensite laths forming sub-laths.
基金Funding from the Finnish Funding Agency for Technology and Innovation(Tekes) is gratefully acknowledged(QaMiS project,DNo 1691/31/07No.40197/07)
文摘The crystallography of bainite, transformed isothermally at 450 ℃ in 0.2C-2.0Mn-1.5Si-0.6Cr steel, was investigated by electron backscatter diffraction (EBSD) analysis. The orientation relationship (OR) was found to be closer to Nishiyama-Wassermann (N-W) than Kurdjumov-Sachs orientation relationship. Bainite microstructure consisted of parallel laths forming a morphological packet structure. Typically, there were three different lath orientations in a morphological packet. These orientations were dictated by a three specific N-W OR variants sharing the same {111} austenite plane. A packet of bainite laths with common {111} austenite plane was termed as crystallographic packet. Generally, the crystallographic packet size corresponded to the morphological packet size. Locally, crystallographic packets with only two dominant orientations were observed. This indicates strong local variant selection during isothermal bainite transformation. The relative orientation between the variants in crystallographic packets was found to be near 60°/〈110〉. This appears to explain the strong peak observed in the grain boundary misorientation distribution near 60°. Bainite also contained pronounced fraction of boundaries with their misorientation in the range of 2.5°-8° with quite widely dispersed rotation angles. Spatially these boundaries were found to locate inside the bainite laths, forming lath-like sub-grains.