Nitrogen(N)as a pivotal factor in influencing the growth,development,and yield of maize.Monitoring the N status of maize rapidly and non-destructive and real-time is meaningful in fertilization management of agricultu...Nitrogen(N)as a pivotal factor in influencing the growth,development,and yield of maize.Monitoring the N status of maize rapidly and non-destructive and real-time is meaningful in fertilization management of agriculture,based on unmanned aerial vehicle(UAV)remote sensing technology.In this study,the hyperspectral images were acquired by UAV and the leaf nitrogen content(LNC)and leaf nitrogen accumulation(LNA)were measured to estimate the N nutrition status of maize.24 vegetation indices(VIs)were constructed using hyperspectral images,and four prediction models were used to estimate the LNC and LNA of maize.The models include a single linear regression model,multivariable linear regression(MLR)model,random forest regression(RFR)model,and support vector regression(SVR)model.Moreover,the model with the highest prediction accuracy was applied to invert the LNC and LNA of maize in breeding fields.The results of the single linear regression model with 24 VIs showed that normalized difference chlorophyll(NDchl)had the highest prediction accuracy for LNC(R^(2),RMSE,and RE were 0.72,0.21,and 12.19%,respectively)and LNA(R^(2),RMSE,and RE were 0.77,0.26,and 14.34%,respectively).And then,24 VIs were divided into 13 important VIs and 11 unimportant VIs.Three prediction models for LNC and LNA were constructed using 13 important VIs,and the results showed that RFR and SVR models significantly enhanced the prediction accuracy of LNC and LNA compared to the multivariable linear regression model,in which RFR model had the highest prediction accuracy for the validation dataset of LNC(R^(2),RMSE,and RE were 0.78,0.16,and 8.83%,respectively)and LNA(R^(2),RMSE,and RE were 0.85,0.19,and 9.88%,respectively).This study provides a theoretical basis for N diagnosis and precise management of crop production based on hyperspectral remote sensing in precision agriculture.展开更多
The disease of banana Fusarium wilt currently threatens banana production areas all over the world.Rapid and large-area monitoring of Fusarium wilt disease is very important for the disease treatment and crop planting...The disease of banana Fusarium wilt currently threatens banana production areas all over the world.Rapid and large-area monitoring of Fusarium wilt disease is very important for the disease treatment and crop planting adjustments.The objective of this study was to evaluate the performance of supervised classification algorithms such as support vector machine(SVM),random forest(RF),and artificial neural network(ANN)algorithms to identify locations that were infested or not infested with Fusarium wilt.An unmanned aerial vehicle(UAV)equipped with a five-band multi-spectral sensor(blue,green,red,red-edge and near-infrared bands)was used to capture the multi-spectral imagery.A total of 139 ground sample-sites were surveyed to assess the occurrence of banana Fusarium wilt.The results showed that the SVM,RF,and ANN algorithms exhibited good performance for identifying and mapping banana Fusarium wilt disease in UAV-based multi-spectral imagery.The overall accuracies of the SVM,RF,and ANN were 91.4%,90.0%,and 91.1%,respectively for the pixel-based approach.The RF algorithm required significantly less training time than the SVM and ANN algorithms.The maps generated by the SVM,RF,and ANN algorithms showed the areas of occurrence of Fusarium wilt disease were in the range of 5.21-5.75 hm2,accounting for 36.3%-40.1%of the total planting area of bananas in the study area.The results also showed that the inclusion of the red-edge band resulted in an increase in the overall accuracy of 2.9%-3.0%.A simulation of the resolutions of satellite-based imagery(i.e.,0.5 m,1 m,2 m,and 5 m resolutions)showed that imagery with a spatial resolution higher than 2 m resulted in good identification accuracy of Fusarium wilt.The results of this study demonstrate that the RF classifier is well suited for the identification and mapping of banana Fusarium wilt disease from UAV-based remote sensing imagery.The results provide guidance for disease treatment and crop planting adjustments.展开更多
Yellow rust(Puccinia striiformis f.sp.Tritici)is a frequently occurring fungal disease of winter wheat(Triticum aestivum L.).During yellow rust infestation,fungal spores appear on the surface of the leaves as yellow a...Yellow rust(Puccinia striiformis f.sp.Tritici)is a frequently occurring fungal disease of winter wheat(Triticum aestivum L.).During yellow rust infestation,fungal spores appear on the surface of the leaves as yellow and narrow stripes parallel to the leaf veins.We analyzed the effect of the fungal spores on the spectra of the diseased leaves to find a band sensitive to yellow rust and established a new vegetation index called the yellow rust spore index(YRSI).The estimation accuracy and stability were evaluated using two years of leaf spectral data,and the results were compared with eight indices commonly used for yellow rust detection.The results showed that the use of the YRSI ranked first for estimating the disease ratio for the 2017 spectral data(R^(2)=0.710,RMSE=0.097)and outperformed the published indices(R^(2)=0.587,RMSE=0.120)for the validation using the 2002 spectral data.The random forest(RF),k-nearest neighbor(KNN),and support vector machine(SVM)algorithms were used to test the discrimination ability of the YRSI and the eight commonly used indices using a mixed dataset of yellow-rust-infested,healthy,and aphid–infested wheat spectral data.The YRSI provided the best performance.展开更多
基金financially supported by the Hainan Province Science and Technology Special Fund(Grant No.ZDYF2021GXJS038 and Grant No.ZDYF2024XDNY196)Hainan Provincial Natural Science Foundation of China(Grant No.320RC486)the National Natural Science Foundation of China(Grant No.42167011).
文摘Nitrogen(N)as a pivotal factor in influencing the growth,development,and yield of maize.Monitoring the N status of maize rapidly and non-destructive and real-time is meaningful in fertilization management of agriculture,based on unmanned aerial vehicle(UAV)remote sensing technology.In this study,the hyperspectral images were acquired by UAV and the leaf nitrogen content(LNC)and leaf nitrogen accumulation(LNA)were measured to estimate the N nutrition status of maize.24 vegetation indices(VIs)were constructed using hyperspectral images,and four prediction models were used to estimate the LNC and LNA of maize.The models include a single linear regression model,multivariable linear regression(MLR)model,random forest regression(RFR)model,and support vector regression(SVR)model.Moreover,the model with the highest prediction accuracy was applied to invert the LNC and LNA of maize in breeding fields.The results of the single linear regression model with 24 VIs showed that normalized difference chlorophyll(NDchl)had the highest prediction accuracy for LNC(R^(2),RMSE,and RE were 0.72,0.21,and 12.19%,respectively)and LNA(R^(2),RMSE,and RE were 0.77,0.26,and 14.34%,respectively).And then,24 VIs were divided into 13 important VIs and 11 unimportant VIs.Three prediction models for LNC and LNA were constructed using 13 important VIs,and the results showed that RFR and SVR models significantly enhanced the prediction accuracy of LNC and LNA compared to the multivariable linear regression model,in which RFR model had the highest prediction accuracy for the validation dataset of LNC(R^(2),RMSE,and RE were 0.78,0.16,and 8.83%,respectively)and LNA(R^(2),RMSE,and RE were 0.85,0.19,and 9.88%,respectively).This study provides a theoretical basis for N diagnosis and precise management of crop production based on hyperspectral remote sensing in precision agriculture.
基金This research was funded by the Hainan Provincial Key R&D Program of China(ZDYF2018073)National Natural Science Foundation of China(41571354)+2 种基金Hainan Provincial Major Science and Technology Program of China(ZDKJ2019006)Agricultural Science and Technology Innovation of Sanya,China(2016NK16)National Special Support Program for High-level Personnel Recruitment(Ten-thousand Talents Program)(Wenjiang Huang),Innovation Foundation of Director of Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences.We also gratefully acknowledge the National Meteorological Information Center of China,Guangxi Jiejiarun Technology Co.,Ltd.and Guangxi Jinsui Agriculture Group Co.,Ltd.for the experiments.
文摘The disease of banana Fusarium wilt currently threatens banana production areas all over the world.Rapid and large-area monitoring of Fusarium wilt disease is very important for the disease treatment and crop planting adjustments.The objective of this study was to evaluate the performance of supervised classification algorithms such as support vector machine(SVM),random forest(RF),and artificial neural network(ANN)algorithms to identify locations that were infested or not infested with Fusarium wilt.An unmanned aerial vehicle(UAV)equipped with a five-band multi-spectral sensor(blue,green,red,red-edge and near-infrared bands)was used to capture the multi-spectral imagery.A total of 139 ground sample-sites were surveyed to assess the occurrence of banana Fusarium wilt.The results showed that the SVM,RF,and ANN algorithms exhibited good performance for identifying and mapping banana Fusarium wilt disease in UAV-based multi-spectral imagery.The overall accuracies of the SVM,RF,and ANN were 91.4%,90.0%,and 91.1%,respectively for the pixel-based approach.The RF algorithm required significantly less training time than the SVM and ANN algorithms.The maps generated by the SVM,RF,and ANN algorithms showed the areas of occurrence of Fusarium wilt disease were in the range of 5.21-5.75 hm2,accounting for 36.3%-40.1%of the total planting area of bananas in the study area.The results also showed that the inclusion of the red-edge band resulted in an increase in the overall accuracy of 2.9%-3.0%.A simulation of the resolutions of satellite-based imagery(i.e.,0.5 m,1 m,2 m,and 5 m resolutions)showed that imagery with a spatial resolution higher than 2 m resulted in good identification accuracy of Fusarium wilt.The results of this study demonstrate that the RF classifier is well suited for the identification and mapping of banana Fusarium wilt disease from UAV-based remote sensing imagery.The results provide guidance for disease treatment and crop planting adjustments.
基金The research was funded by the Chinese Academy of Sciences[183611KYSB20200080]the National Natural Science Foundation of China[41871339,42071320,42071423,41801338]+2 种基金the National Special Support Program for High-level Personnel Recruitment(Wenjiang Huang)the Youth Innovation Promotion Association CAS(Huichun Ye)the Future Star Talent Program of Aerospace Information Research Institute,CAS(Huichun Ye).
文摘Yellow rust(Puccinia striiformis f.sp.Tritici)is a frequently occurring fungal disease of winter wheat(Triticum aestivum L.).During yellow rust infestation,fungal spores appear on the surface of the leaves as yellow and narrow stripes parallel to the leaf veins.We analyzed the effect of the fungal spores on the spectra of the diseased leaves to find a band sensitive to yellow rust and established a new vegetation index called the yellow rust spore index(YRSI).The estimation accuracy and stability were evaluated using two years of leaf spectral data,and the results were compared with eight indices commonly used for yellow rust detection.The results showed that the use of the YRSI ranked first for estimating the disease ratio for the 2017 spectral data(R^(2)=0.710,RMSE=0.097)and outperformed the published indices(R^(2)=0.587,RMSE=0.120)for the validation using the 2002 spectral data.The random forest(RF),k-nearest neighbor(KNN),and support vector machine(SVM)algorithms were used to test the discrimination ability of the YRSI and the eight commonly used indices using a mixed dataset of yellow-rust-infested,healthy,and aphid–infested wheat spectral data.The YRSI provided the best performance.