The feasibility of using anaerobic baffled reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented unde...The feasibility of using anaerobic baffled reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented under different peak flow factors (PFF of 1 to 6), superficial gas velocities (between 0.6 and 3.1 cm/hr) and hydraulic retention times (HRT) (24, 36 and 48 hr). Residence time distribution (RTD) analyses were carded out to investigate the hydraulic characteristics of the ABR. It was found that the PFF resulted in hydraulic dead space. The dead space did not exceed 13% at PFF of 1, 2 and 4 while there was 2-fold increase (26%) at PFF of 6. Superficial gas velocities did not result in more (biological) dead space. The mixing pattern of ABR tended to be a completely- mixed reactor when PFF increased. Superficial gas velocities did not affect mixing pattern. The effects of PFF on mixing pattern could be minimized by higher HRT (48 hr). The tank-in-series (TIS) model (N = 4) was suitable to describe the hydraulic behaviour of the studied system. The HRT of 48 hr was able to maintain the mixing pattern under different flow patterns, introducing satisfactory hydraulic efficiency. Chemical oxygen demand (COD) and total suspended solids (TSS) removals under all flow patterns were achieved more than 85% and 90%, respectively. The standard deviation of effluent COD and TSS concentration did not exceed 15 mg/L.展开更多
基金supported by the Swiss National Centre of Competence in Research (NCCR) North-South:Research Partnerships for Mitigating Syndromes of Global Change, and the Swiss National Science Foundation and the Swiss Agency for Development and Cooperation
文摘The feasibility of using anaerobic baffled reactor (ABR) as onsite wastewater treatment system was discussed. The ABR consisted of one sedimentation chamber and three up-flow chambers in series was experimented under different peak flow factors (PFF of 1 to 6), superficial gas velocities (between 0.6 and 3.1 cm/hr) and hydraulic retention times (HRT) (24, 36 and 48 hr). Residence time distribution (RTD) analyses were carded out to investigate the hydraulic characteristics of the ABR. It was found that the PFF resulted in hydraulic dead space. The dead space did not exceed 13% at PFF of 1, 2 and 4 while there was 2-fold increase (26%) at PFF of 6. Superficial gas velocities did not result in more (biological) dead space. The mixing pattern of ABR tended to be a completely- mixed reactor when PFF increased. Superficial gas velocities did not affect mixing pattern. The effects of PFF on mixing pattern could be minimized by higher HRT (48 hr). The tank-in-series (TIS) model (N = 4) was suitable to describe the hydraulic behaviour of the studied system. The HRT of 48 hr was able to maintain the mixing pattern under different flow patterns, introducing satisfactory hydraulic efficiency. Chemical oxygen demand (COD) and total suspended solids (TSS) removals under all flow patterns were achieved more than 85% and 90%, respectively. The standard deviation of effluent COD and TSS concentration did not exceed 15 mg/L.