The results of diagnostics of spectral, temporal and energy characteristics of the radiation of gas-discharge plasma in a mixture of mercury diiodide vapor with helium in the spectral range of 350 - 900 nm, and the pl...The results of diagnostics of spectral, temporal and energy characteristics of the radiation of gas-discharge plasma in a mixture of mercury diiodide vapor with helium in the spectral range of 350 - 900 nm, and the plasma parameters in the range of reduced electric field E/N = 1 - 100 Td are presented. The plasma is created in the barrier discharge device with a cylindrical aperture. The electrodes are placed 0.2 m in length at a distance of 0.015 m. The amplitude of the pump pulse, the duration and frequency were 20 - 30 kV, 150 ns and 1 - 20 kHz, respectively. Radiation in the visible region of the spectrum of mercury monoiodide exciplex molecule is revealed. Regu larities in the optical characteristics of the plasma, depending on the partial pressures of the components of the mixture, the electron energy distribution function, mean electron energy, specific losses of discharge power on the process of dissociative excitation of mercury monoiodide (state B2Σ+1/2) molecules as well as the rate constant of dissociative excitation of mercury monoiodide molecules in working mixture depending on the given reduced electric field are established.展开更多
文摘The results of diagnostics of spectral, temporal and energy characteristics of the radiation of gas-discharge plasma in a mixture of mercury diiodide vapor with helium in the spectral range of 350 - 900 nm, and the plasma parameters in the range of reduced electric field E/N = 1 - 100 Td are presented. The plasma is created in the barrier discharge device with a cylindrical aperture. The electrodes are placed 0.2 m in length at a distance of 0.015 m. The amplitude of the pump pulse, the duration and frequency were 20 - 30 kV, 150 ns and 1 - 20 kHz, respectively. Radiation in the visible region of the spectrum of mercury monoiodide exciplex molecule is revealed. Regu larities in the optical characteristics of the plasma, depending on the partial pressures of the components of the mixture, the electron energy distribution function, mean electron energy, specific losses of discharge power on the process of dissociative excitation of mercury monoiodide (state B2Σ+1/2) molecules as well as the rate constant of dissociative excitation of mercury monoiodide molecules in working mixture depending on the given reduced electric field are established.