The recent increase in the adoption of total ankle arthroplasty(TAA)reflects the improvements in implant designs and surgical techniques,including the use of preoperative navigation system and patient-specific instrum...The recent increase in the adoption of total ankle arthroplasty(TAA)reflects the improvements in implant designs and surgical techniques,including the use of preoperative navigation system and patient-specific instrumentation(PSI),such as custom-made cutting guides.Cutting guides are customized with respect to each patient's anatomy based on preoperative ankle computed tomography scans,and they drive the saw intra-operatively to improve the accuracy of bone resection and implant positioning.Despite some promising results,the main queries in the literature are whether PSI improves the reliability of achieving neutral ankle alignment and more accurate implant sizing,whether it is actually superior over standard techniques,and whether it is cost effective.Moreover,the advantages of PSI in clinical outcomes are still theoretical because the current literature does not allow to confirm its superiority.The purpose of this review article is therefore to assess the current literature on PSI in TAA with regard to current implants with PSI,templating and preoperative planning strategies,alignment and sizing,clinical outcomes,cost analysis,and comparison with standard techniques.展开更多
This work focusing on studying the biocompatibility and the effect of gelatin porous scaffold on the characteristics of human osteoblast like cells, including proliferation, adhesion, scaffold-cell interaction and its...This work focusing on studying the biocompatibility and the effect of gelatin porous scaffold on the characteristics of human osteoblast like cells, including proliferation, adhesion, scaffold-cell interaction and its potential to induce bone regeneration. Osteoblast like cells were seeded on gelatin/genipin scaffolds for 7, 14 and 21 days. Cell proliferation assay, light microscopy, transmission electron microscopy and high resolution scanning electron microscopy were carried to evaluate cell viability, cell adhesion and the production of extracellular matrix. Cell proliferation assay showed a high biocompatibility of the material. High resolution scanning electron microscopy and light microscopy showed a strong adhesion of MG63 ceils on the surface of gelatin scaffold and high penetration in the macroporosities of the material. TEM analysis showed an intense production of extracellular matrix protein. In vitro analysis indicated a good biocompatibility of the scaffold and presents it as a potential candidate material for tissue engineering.展开更多
文摘The recent increase in the adoption of total ankle arthroplasty(TAA)reflects the improvements in implant designs and surgical techniques,including the use of preoperative navigation system and patient-specific instrumentation(PSI),such as custom-made cutting guides.Cutting guides are customized with respect to each patient's anatomy based on preoperative ankle computed tomography scans,and they drive the saw intra-operatively to improve the accuracy of bone resection and implant positioning.Despite some promising results,the main queries in the literature are whether PSI improves the reliability of achieving neutral ankle alignment and more accurate implant sizing,whether it is actually superior over standard techniques,and whether it is cost effective.Moreover,the advantages of PSI in clinical outcomes are still theoretical because the current literature does not allow to confirm its superiority.The purpose of this review article is therefore to assess the current literature on PSI in TAA with regard to current implants with PSI,templating and preoperative planning strategies,alignment and sizing,clinical outcomes,cost analysis,and comparison with standard techniques.
文摘This work focusing on studying the biocompatibility and the effect of gelatin porous scaffold on the characteristics of human osteoblast like cells, including proliferation, adhesion, scaffold-cell interaction and its potential to induce bone regeneration. Osteoblast like cells were seeded on gelatin/genipin scaffolds for 7, 14 and 21 days. Cell proliferation assay, light microscopy, transmission electron microscopy and high resolution scanning electron microscopy were carried to evaluate cell viability, cell adhesion and the production of extracellular matrix. Cell proliferation assay showed a high biocompatibility of the material. High resolution scanning electron microscopy and light microscopy showed a strong adhesion of MG63 ceils on the surface of gelatin scaffold and high penetration in the macroporosities of the material. TEM analysis showed an intense production of extracellular matrix protein. In vitro analysis indicated a good biocompatibility of the scaffold and presents it as a potential candidate material for tissue engineering.