Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered arti...The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered artificially.Subsequently,color and gloss of the coatings were measured before and after the weathering test.Field emission scanning electron microscopy(FE-SEM)micrographs prepared from the coatings showed that the average size of nano-particles in the polyurethane substrate was approximately 500 nm.Nuclear magnetic resonance(13C-NMR)spectroscopy showed that strong urethane bonds were formed in the nano-lignin-based polyurethane.Differential calorimetric analysis(DSC)test revealed that the glass-transition temperature(Tg)of lignin nanoparticles modified with diethylenetriamine(DETA)was 112.8℃ and Tg of lignin nano-particles modified with ethylenediamine(EDA)was 102.5℃,which is lower than the Tg of un-modified lignin(114.6℃)and lignin modified with DETA(126.8℃)and lignin modified with EDA(131.3℃).The coatings modified with lignin nano-particles had a greater change in gloss.The lignin nano-particles in the modified coating are trapping hydroxyl radicals which reduces photoactivity and yellowing of the polyurethane by about 3 times compared to unmodified polyurethane coatings.After weathering test,the nano-lignin-based coating had a rougher surface with a lower contact angle(0.78°)compared to the unmodified polyurethane coating(0.85°).展开更多
Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this w...Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.展开更多
This study is the first to evaluate the phytochemical content and biological properties of Tunisian T.platyphyllos Scop.A total of 23 compounds of essential oils were identified by gas chromatography-mass spectrometry...This study is the first to evaluate the phytochemical content and biological properties of Tunisian T.platyphyllos Scop.A total of 23 compounds of essential oils were identified by gas chromatography-mass spectrometry(GC-MS)analysis of bracts and fruit extracts.The results show that oxygenated monoterpenes were the dominant class of essential oils.The phenolic composition was investigated by matrix-assisted laser desorption/ionizationtime of flight(MALDI-TOF).The analysis showed that the chemical profiles of the ethanolic extracts of bracts and fruits are substantially similar.The highest polyphenol content was found in the ethanolic extracts of the fruits(7.65 mg gallic acid equivalents(GAE).g−1 on dry weight(DW).As for the antioxidant capacity,it was recorded in the essential oils of the fruits(IC_(50)=0.91 mg.mL^(−1)).The results obtained showed that the antioxidant activity of the fruit essential oil was higher than that of the ethanol extract.The fruit essential oil was also found to have the highest reducing power(IC_(50)=0.67 mg.mL^(−1)).In terms of iron-chelating power,fruit essential oil has the highest chelating power(IC_(50)=2.03 mg.mL^(−1)).Compared to the ethanolic extract,the essential oil had the maximum antioxidant capacity.The enzymatic activity of acetylcholinesterase(AChE)inhibition of the essential oil from T.platyphyllos bracts had the most potent inhibitory effect(IC_(50)=0.77 mg.mL^(−1)),followed by the essential oil from the fruits(IC_(50)=0.95 mg.mL^(−1)).The results suggest that T.platyphyllos can be used as a potential source of naturally occurring bioactive compounds and antioxidants.展开更多
Tannin was extracted from different subspecies of Acacia nilotica,Acacia nilotica nilotica(Ann),Acacia nilotica tomentosa(Ant)and Acacia nilotica adansonii(Ana).The aim was to elucidate their structure and evaluate th...Tannin was extracted from different subspecies of Acacia nilotica,Acacia nilotica nilotica(Ann),Acacia nilotica tomentosa(Ant)and Acacia nilotica adansonii(Ana).The aim was to elucidate their structure and evaluate their reactivity as bioadhesives in the wood industry.The extracts were prepared by hot water extraction(90°C tem-perature).Their gel time with paraformaldehyde was used atfirst to compare their reactivity.The tannin contents and the percentage of total polyphenolic materials in different solutions of the extracts spray dried powder were determined by the hide powder method.Concentrated solutions(47%)were tested by both MALDI ToF,13CNMR.The thermomechanical analysis(TMA)was performed to evaluate their modulus of elasticity(MOE)at different pHs.The gel times of all the three tannin extracts showed that their reactivity and it was com-parable to other known procyanidin/prodelphinidin tannin extract types.Ana,Ann and Ant showed highest per-cent of total polyphenolic materials at 70%,64%,and 57%,respectively.The 13CNMR spectra showed that the three subspecies of condensed tannins were mainly constituted of procyanidins(PC)and prodelphinidins(PD)in slightly different ratios.Ann(56.5%PC and 43.4%PD),Ant(57%PC and 43%PD)and Ana(58%PC and 42%PD).MALDI–TOF spectra showed the presence offlavonoid monomers,and oligomers some of which linked to short carbohydrates monomers or dimers.TMA revealed that the three types of tannins had high MOE at their initial pH(5).展开更多
Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(U...Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(UG)resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization.This results in a poorer bonding performance and water resistance of UG resins.A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization,and then to condense these with glyoxal to obtain a novel UG resin.Therefore,in this present work,the urea was reacted with hexamethylene diamine to form a polyurea named HU,and then this was used to react it with different amounts of glyoxal to synthesize hexamethylenediamine-urea-glyoxal(HUG)polycondensation resins,and to use this for bonding plywood.The results show that the glyoxal can well react with HU polyuria via addition and schiff base reaction,and also the HUG resin exhibits excellent bonding strength and water resistance.The shear strength of the plywood bonded with this HUG at 160°C hot press temperature as high as 1.93 MPa,2.16 MPa and 1.61 MPa,respectively,which meets the requirement of the China national standard GB/T 9846-2015(≥0.7 MPa),and can be a good choice as a wood adhesive for industrial application.展开更多
This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging....This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.Various factors have influence the coagulation/flocculation process,including the effect of pH,coagulant dosage,coagulant type,temperature,initial turbidity,coagulation speed,flocculation speed,coagulation and flocculation time,settling time,colloidal particles,zeta potential,the effects of humic acids,and extraction density are explained.The bio-coagulants derived from plants are outlined.The impact of organic coagulants on water quality,focusing on their effects on the physicochemical parameters of water,heavy metals removal,and bacteriological water quality,is examined.The methods of extraction and purification of plant-based coagulants,highlighting techniques such as solvent extraction and ultrasonic extraction,are discussed.It also examines the parameters that influence these processes.The methods and principles of purification of coagulating agents,including dialysis,freeze-drying,ion exchange,electrophoresis,filtration,and centrifugation,are listed.Finally,it evaluates the sustainability of natural coagulants,focusing on the environmental,technical,and economic aspects of their use.At the end of this review,the readers should have a comprehensive understanding of the mechanisms,selection,extraction,purification,and sustainability of plant-based natural coagulants in water treatment.展开更多
Non-isocyanate polyurethane(NIPU)foams from a commercial hydrolysable tannin extract,chestnut wood tannin extract,have been prepared to determine what chemical species and products are taking part in the reactions inv...Non-isocyanate polyurethane(NIPU)foams from a commercial hydrolysable tannin extract,chestnut wood tannin extract,have been prepared to determine what chemical species and products are taking part in the reactions involved.This method is based on two main steps:the reaction with dimethyl carbonate and the formation of urethane bonds by further reaction of the carbonated tannin with a diamine-like hexamethylene diamine.The hydroxyl groups on the tannin polyphenols and on the carbohydrates intimately linked with it and part of a hydrolysable tannin are the groups involved in these reactions.The carbohydrate skeleton of the hydrolysable tannin is also able to participate through its hydroxyl groups to the same two reactions rendering the whole molecular complex able to react to form NIPUs.The analysis by Matrix-Assisted Laser Desorption Ionization(MALDI-TOF)mass spectrometry and 13C Nuclear Magnetic Resonance(13C NMR)to further investigate the reaction mechanisms involved revealed the unsuspected complexity of chestnut hydrolysable tannin,with different fragments reacting in different manners forming a hardened network of considerable complexity.As the morphology and performance of these types of foams changes slightly with the change in the amount of glutaraldehyde and hexamine hardeners,the best performing foam formulation previously determined was scanned by SEM and analysed chemically for the structures formed.展开更多
Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Amon...Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Among biopolymers,lignin is regarded as the base of a new polymer in polyol construction.The present study aimed to investigate the effects of amine type(diethylenetriamine and ethylenediamine)on the modification of lignin-based polyols,so as to provide an alternative to petroleum polyols and,in turn,increase functional groups and reduce their harm to humans’health and the environment.To this aim,first,lignin was extracted from raw liquor.Next,the extracted lignin was reacted with diethylenetriamine(DETA)and ethylenediamine(EDA).Finally,the Mannich method was used for the reaction between amine lignin and propylene carbonate.The results of the Fourier Transform Infrared(FTIR)spectroscopy analysis showed that modification with DETA led to more structural change in lignin and peak 1100 indicates the presence of C–O bond related to urethane bonds in modified lignin.Moreover,adding propylene carbonate to aminated lignin did not result in much change in the results of the FTIR analysis.Additionally,urethane bonds can be seen in the results of GPC at 400℃–500℃.Furthermore,a slight decrease in thermal stability was observed in lignin modified with amine and propylene carbonate,compared to the raw lignin sample.展开更多
This brief article reviews a very particular and quite narrowfield,namely what has been done and what is needed to know for tannin adhesives for wood panels to succeed industrially.The present fashionable focus on bio...This brief article reviews a very particular and quite narrowfield,namely what has been done and what is needed to know for tannin adhesives for wood panels to succeed industrially.The present fashionable focus on bioadhe-sives has led to producing chemical adhesive formulations and approaches for tannin adhesives as a subject of academic publications.These,as good and original they might be,are and will still remain a rather empty aca-demic exercise if not put to the test of real industrial trials and industrial use.They will remain so without the“little”secrets and techniques outlined here that show that there is a great gap between developing an adhesive formulation in the laboratory and the hard reality to make it work where it does really count,in its industrial application.It outlines the fact that even more modern and excellent,newly developed bioadhesive formulations might well miserably fail once tried in the industry if the problems that always arise in their upgrading are not identified and solved,and solved well.It also outlines the fact that not only must costs always be taken into account and that a practical and possibly easy-to-handle approach must always be used,but too expensive or complex and unyielding adhesive systems are also often shown to be unusable or unsuitable in industry.展开更多
Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves,reasonable price and outstanding environmental features.But their poor water resistance,low b...Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves,reasonable price and outstanding environmental features.But their poor water resistance,low bonding strength and intolerance to mold are major drawbacks,so that proper modification before use is essential.Glutaraldehyde is one of the more apt cross-linking agents for soybean protein adhesives,which can effectively improve the bonding strength and water resistance of the adhesive.Equally,glutaraldehyde is also an efficient and broad-spectrum fungicide that can significantly improve the anti-fungal properties of a soy protein adhesive.In the work presented here,matrix assisted laser desorption ionization(MALDI-ToF)mass spectrometry and Fourier transform infrared spectroscopy techniques were used to analyze the reaction mechanism of glutaraldehyde cross-linking soybean protein.The results confirmed the reaction of the aldehyde group with amino groups of the side chains and the amide groups of the peptide linkages constituting the skeletal chain of the protein.The laboratory plywood and particleboard bonded with glutaraldehyde-soy bean protein adhesives were prepared to determine the adhesive bonding properties,the dry strength,24 h cold water soaking wet strength and 3 h hot water(63°C)wet strength of plywood were 2.03,1.13 and 0.75 MPa,respectively,which satisfied the requirements of industrial production.展开更多
Wood plays a major role in the production of furniture and wooden structures.Nevertheless,in this process,the massive use of adhesives and plural connectors remains a definite problem for health and the environment.Th...Wood plays a major role in the production of furniture and wooden structures.Nevertheless,in this process,the massive use of adhesives and plural connectors remains a definite problem for health and the environment.Therefore,wood welding is a breakthrough in this respect.This paper reviews the applications of wood welding in furniture and construction and then examines advances in improving the durability of welded wood against water.Our contribution also highlights the need to join African tropical woods using the rotational friction welding technique.According to our results,these woods present interesting chemical singularities,which could provide solutions to the water vulnerability of the welded wood.Moreover,the use of such a joining method would first free the Cameroonian furniture industry from the chemical industry,secondly position it at the forefront of new eco-design trends and thirdly make it competitive with other countries in the Central African sub-region.These works enrich the long and rich bibliography on the technique of wood welding,which has long been conspicuous by its absence of tropical woods.展开更多
Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)partic...Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)particleboard coating was then prepared by reacting raw tannin extract with aminated tannin extract and thus cross-linking the two by substituting tannin’s hydroxyl groups with the–NH_(2)groups on the aminated tannin to form–NH-bridges between the two.The resulting particleboard coating gave encouraging results when pressed at 180℃for 3 min.Conversely,the system in which tannin was reacted/cross-liked with urea(ATU)by a similar amination reaction did not perform as well as the ATT system,and this even when a higher curing temperature and longer hot press time were used.In particular its water repellence was worse probably due to the presence of urea and such a system with lower reactivity.Nonetheless,substituting the tannin–OHs with the urea–NH_(2)groups appeared to also take place.ATT gave better results than ATU as regards water repellence and mechanical resistance as shown by the cross cut test.The ATT system was shown to be between 95%and 98%biosourced.The difference appeared to be due,by TMA analysis,to the much faster formation of the ATT hardened network leading to a better cross-linked polymer coating.The chemical species formed for both the ATT and ATU system were studied by MALDI ToF and CP MAS^(13)C NMR.展开更多
Soy flour(SF),soy protein and soy protein isolates(SPI)have been the focus of increasing research on their application as new materials for a variety of applications,mainly for wood adhesives and other resins.Tannins ...Soy flour(SF),soy protein and soy protein isolates(SPI)have been the focus of increasing research on their application as new materials for a variety of applications,mainly for wood adhesives and other resins.Tannins too have been the focus of increasing research for similar applications.While both materials are classed as non-toxic and have achieved interesting results the majority of the numerous and rather inventive approaches have still relied on some sort of hardeners or cross-linkers to bring either of them or even their combination to achieve acceptable results.The paper after a presentation of the two materials and their characteristics concentrates on the formation of gels,gelling and even hardening in the case of soy-tannin combined resins.The chapter than finishes with details of the formation of resins giving suitable wood adhesive of acceptable performance by the covalent coreaction of soy protein and tannin without any other hardener,thus totally bio-sourced,non-toxic and environment friendly as a base of further advances to expect in future by these two materials combination.展开更多
This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF...This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF analysis of the reaction of the MUF resin with citric acid.The preliminary results of the physical and mechanical properties of the LVL prepared are also presented.Veneers from Populus sp were used to manufacture 5-layer laminated veneer lumber(LVL)of small dimensions.Five combinations of the amount of citric acid,MUF spread rate and pressing parameters were tested.LVL bonded with 20%of citric acid+100 g/m^(2)of MUF,hot-pressed using a 3-step process with maximum 1.5 MPa of pressure yielded the board with better dimensional stability and mechanical properties.It could be concluded that citric acid in combination with MUF can be used for bonding wood veneer and the research should be continued to study further the parameters involved and to enhance the results.展开更多
Furfurylation is a well-known wood modification technology.This paper studied the effect of tannin addition on the wood furfurylation.Three kinds of dicarboxylic acids,adipic acid,succinic acid,and tartaric acid,as we...Furfurylation is a well-known wood modification technology.This paper studied the effect of tannin addition on the wood furfurylation.Three kinds of dicarboxylic acids,adipic acid,succinic acid,and tartaric acid,as well as glyoxal as a comparing agent,were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification.Impregnation of furanic or tannin-furanic solution at a certain concentration into the wood followed with curing at 103℃for a specific duration was performed for the wood modification.Different properties of the modified woods like dimensional stability,resistance of treatment to leaching,mechanical properties,decay durability against white-rot(Coriolus versicolor,Pycnoporus sanguineus)and brown-rot(Coniophora puteana)as well as their chemical and anatomical characteristics were evaluated.Results revealed that the partial substitution of FA by the tannins improved the fixation of the chemicals impregnated in wood.Further,dimensional stability,leaching resistance,Brinell hardness,modulus of elasticity/modulus of rupture,and decay durability properties of the furfurylated wood were also improved in the presence of tannins.Scanning electron microscopy revealed the deposition of the polymer in the wood lumen cells and in the wood cell walls.展开更多
Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and...Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams.Glycerol,while initially added to control the reaction temperature,was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams.Acetaldehyde was used as the cross-linking agent instead of formaldehyde,as it showed a better performance with the esterified tannin.The compression results showed a significant decrease of the Modulus of Elasticity(MOE)of the flexible foams in relation to that of the rigid foams,confirming their flexible character.The lauryl-and palmitoyl-esterified biofoams presented similar mechanical properties,while the oleyl-esterified biofoam presented different mechanical and morphological result not really showing the expected flexibility.Both the esterified rigid and flexible tannin-based biofoams showed good water resistance and their sessile drop contact angle analysis as a function of time confirmed this characteristic.Scanning Electron Microscope(SEM)analysis showed the flexible foams to present a higher proportion of closed cells than the rigid foams.Conversely,the cells depth of the flexible foams was lower than that of the rigid foam.As regards their thermal resistance,the flexible foams showed a slight loss of mass compared to the rigid ones without glycerol.Both types of foams presented much lower surface friability of non-esterified rigid foams.展开更多
The influence of nanolignin coupling bio-agent on some characteristics of polypropylene-wood flour composites was studied.Thus,nanolignin was prepared by the acidic method,and then different ratios of it(0,1,3 and 5 w...The influence of nanolignin coupling bio-agent on some characteristics of polypropylene-wood flour composites was studied.Thus,nanolignin was prepared by the acidic method,and then different ratios of it(0,1,3 and 5 wt%)were added to a polypropylene-wood flour mixture.After mechanically mixing wood flour,nanolignin,and polypropylene,the mixture was injection molded.ASTM methods were used to measure the structural properties of nanolignin,and prepared composites’water absorption,thickness swelling,bending modulus,and bending,tensile and impact strengths.Transforming the original lignin to nanolignin did not change the chemical bonds of the material.The addition of nanolignin yielded improved mechanical and physical properties of the composites prepared.Higher strength and dimensional stability are presented by nanolignin-containing composites when comparing them with those prepared with normal lignin.Nanolignin was shown by SEM(Scanning Electron Microscope)observation to be uniformly dispersed within the polymer matrix.Wood polymer composites(WPCs)with nanolignin exhibited comparable properties with the control samples prepared using maleic anhydride polypropylene(MAPP).展开更多
Melamine-dialdehyde starch resins used for wood surface finishes have been developed.The reaction of melamine with dialdehyde starch has been shown to occur by FTIR and MALDI ToF spectrometry,with several oligomer spe...Melamine-dialdehyde starch resins used for wood surface finishes have been developed.The reaction of melamine with dialdehyde starch has been shown to occur by FTIR and MALDI ToF spectrometry,with several oligomer species due to the reaction of the two materials being identified,and the resin thermal stability was studied by thermogravimetric analysis.The resins were prepared by two different procedures when it was realized that dialdehyde starch is sensitive to too high a temperature for prolonged times.The melamine-dialdehyde starch resins were applied on particleboard supports as a direct liquid surface finish and a resin-impregnated paper.The surface finishes were tested for adhesion by the cross-cut test,their initial sessile drop contact angle,and the contact angle evolution as a function of time.The best results were obtained by the resins catalyzed by 2% ammonium sulfate and applied to the support surface as a resin-impregnated paper hot pressed for 3 min at 200℃,although the results at 180℃ also looked promising.展开更多
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
文摘The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered artificially.Subsequently,color and gloss of the coatings were measured before and after the weathering test.Field emission scanning electron microscopy(FE-SEM)micrographs prepared from the coatings showed that the average size of nano-particles in the polyurethane substrate was approximately 500 nm.Nuclear magnetic resonance(13C-NMR)spectroscopy showed that strong urethane bonds were formed in the nano-lignin-based polyurethane.Differential calorimetric analysis(DSC)test revealed that the glass-transition temperature(Tg)of lignin nanoparticles modified with diethylenetriamine(DETA)was 112.8℃ and Tg of lignin nano-particles modified with ethylenediamine(EDA)was 102.5℃,which is lower than the Tg of un-modified lignin(114.6℃)and lignin modified with DETA(126.8℃)and lignin modified with EDA(131.3℃).The coatings modified with lignin nano-particles had a greater change in gloss.The lignin nano-particles in the modified coating are trapping hydroxyl radicals which reduces photoactivity and yellowing of the polyurethane by about 3 times compared to unmodified polyurethane coatings.After weathering test,the nano-lignin-based coating had a rougher surface with a lower contact angle(0.78°)compared to the unmodified polyurethane coating(0.85°).
基金supported by the Institut de la Francophonie pour le Developpement Durable(IFDD/Canada)/Projet de Deploiement des Technologies et Innovations Environnementales(PDTIE)funded by Organisation Internationale de la Francophonie(OIF)the Organisation of African,Caribbean and Pacific States and the European Union(EU)(FED/220/421-370)the Local Materials Promotion Authority(MIPROMALO)of the Ministry of Scientific Research and Innovation of Cameroon who made it possible for this scientific work to be carried out.
文摘Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.
文摘This study is the first to evaluate the phytochemical content and biological properties of Tunisian T.platyphyllos Scop.A total of 23 compounds of essential oils were identified by gas chromatography-mass spectrometry(GC-MS)analysis of bracts and fruit extracts.The results show that oxygenated monoterpenes were the dominant class of essential oils.The phenolic composition was investigated by matrix-assisted laser desorption/ionizationtime of flight(MALDI-TOF).The analysis showed that the chemical profiles of the ethanolic extracts of bracts and fruits are substantially similar.The highest polyphenol content was found in the ethanolic extracts of the fruits(7.65 mg gallic acid equivalents(GAE).g−1 on dry weight(DW).As for the antioxidant capacity,it was recorded in the essential oils of the fruits(IC_(50)=0.91 mg.mL^(−1)).The results obtained showed that the antioxidant activity of the fruit essential oil was higher than that of the ethanol extract.The fruit essential oil was also found to have the highest reducing power(IC_(50)=0.67 mg.mL^(−1)).In terms of iron-chelating power,fruit essential oil has the highest chelating power(IC_(50)=2.03 mg.mL^(−1)).Compared to the ethanolic extract,the essential oil had the maximum antioxidant capacity.The enzymatic activity of acetylcholinesterase(AChE)inhibition of the essential oil from T.platyphyllos bracts had the most potent inhibitory effect(IC_(50)=0.77 mg.mL^(−1)),followed by the essential oil from the fruits(IC_(50)=0.95 mg.mL^(−1)).The results suggest that T.platyphyllos can be used as a potential source of naturally occurring bioactive compounds and antioxidants.
基金the fund provided by NAPATA program,jointly funded by France campus and the Ministry of Higher Education and Scientific research,SudanLab facilities provided by LERMAB which is supported by a grant of the French Agence Nationale de la Recherche(ANR)in the ambit of the laboratory of excellence(Labex)ARBRE is also aknowledged.
文摘Tannin was extracted from different subspecies of Acacia nilotica,Acacia nilotica nilotica(Ann),Acacia nilotica tomentosa(Ant)and Acacia nilotica adansonii(Ana).The aim was to elucidate their structure and evaluate their reactivity as bioadhesives in the wood industry.The extracts were prepared by hot water extraction(90°C tem-perature).Their gel time with paraformaldehyde was used atfirst to compare their reactivity.The tannin contents and the percentage of total polyphenolic materials in different solutions of the extracts spray dried powder were determined by the hide powder method.Concentrated solutions(47%)were tested by both MALDI ToF,13CNMR.The thermomechanical analysis(TMA)was performed to evaluate their modulus of elasticity(MOE)at different pHs.The gel times of all the three tannin extracts showed that their reactivity and it was com-parable to other known procyanidin/prodelphinidin tannin extract types.Ana,Ann and Ant showed highest per-cent of total polyphenolic materials at 70%,64%,and 57%,respectively.The 13CNMR spectra showed that the three subspecies of condensed tannins were mainly constituted of procyanidins(PC)and prodelphinidins(PD)in slightly different ratios.Ann(56.5%PC and 43.4%PD),Ant(57%PC and 43%PD)and Ana(58%PC and 42%PD).MALDI–TOF spectra showed the presence offlavonoid monomers,and oligomers some of which linked to short carbohydrates monomers or dimers.TMA revealed that the three types of tannins had high MOE at their initial pH(5).
基金supported by the Yunnan Provincial Natural Science Foundation (202201AU070222,202201AT070045,202101BD070001-074)Scientific Research Fund Project of Yunnan Provincial Department of Education (2022J0490)financed by the 111 Project (D21027).
文摘Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(UG)resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization.This results in a poorer bonding performance and water resistance of UG resins.A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization,and then to condense these with glyoxal to obtain a novel UG resin.Therefore,in this present work,the urea was reacted with hexamethylene diamine to form a polyurea named HU,and then this was used to react it with different amounts of glyoxal to synthesize hexamethylenediamine-urea-glyoxal(HUG)polycondensation resins,and to use this for bonding plywood.The results show that the glyoxal can well react with HU polyuria via addition and schiff base reaction,and also the HUG resin exhibits excellent bonding strength and water resistance.The shear strength of the plywood bonded with this HUG at 160°C hot press temperature as high as 1.93 MPa,2.16 MPa and 1.61 MPa,respectively,which meets the requirement of the China national standard GB/T 9846-2015(≥0.7 MPa),and can be a good choice as a wood adhesive for industrial application.
文摘This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.Various factors have influence the coagulation/flocculation process,including the effect of pH,coagulant dosage,coagulant type,temperature,initial turbidity,coagulation speed,flocculation speed,coagulation and flocculation time,settling time,colloidal particles,zeta potential,the effects of humic acids,and extraction density are explained.The bio-coagulants derived from plants are outlined.The impact of organic coagulants on water quality,focusing on their effects on the physicochemical parameters of water,heavy metals removal,and bacteriological water quality,is examined.The methods of extraction and purification of plant-based coagulants,highlighting techniques such as solvent extraction and ultrasonic extraction,are discussed.It also examines the parameters that influence these processes.The methods and principles of purification of coagulating agents,including dialysis,freeze-drying,ion exchange,electrophoresis,filtration,and centrifugation,are listed.Finally,it evaluates the sustainability of natural coagulants,focusing on the environmental,technical,and economic aspects of their use.At the end of this review,the readers should have a comprehensive understanding of the mechanisms,selection,extraction,purification,and sustainability of plant-based natural coagulants in water treatment.
文摘Non-isocyanate polyurethane(NIPU)foams from a commercial hydrolysable tannin extract,chestnut wood tannin extract,have been prepared to determine what chemical species and products are taking part in the reactions involved.This method is based on two main steps:the reaction with dimethyl carbonate and the formation of urethane bonds by further reaction of the carbonated tannin with a diamine-like hexamethylene diamine.The hydroxyl groups on the tannin polyphenols and on the carbohydrates intimately linked with it and part of a hydrolysable tannin are the groups involved in these reactions.The carbohydrate skeleton of the hydrolysable tannin is also able to participate through its hydroxyl groups to the same two reactions rendering the whole molecular complex able to react to form NIPUs.The analysis by Matrix-Assisted Laser Desorption Ionization(MALDI-TOF)mass spectrometry and 13C Nuclear Magnetic Resonance(13C NMR)to further investigate the reaction mechanisms involved revealed the unsuspected complexity of chestnut hydrolysable tannin,with different fragments reacting in different manners forming a hardened network of considerable complexity.As the morphology and performance of these types of foams changes slightly with the change in the amount of glutaraldehyde and hexamine hardeners,the best performing foam formulation previously determined was scanned by SEM and analysed chemically for the structures formed.
文摘Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Among biopolymers,lignin is regarded as the base of a new polymer in polyol construction.The present study aimed to investigate the effects of amine type(diethylenetriamine and ethylenediamine)on the modification of lignin-based polyols,so as to provide an alternative to petroleum polyols and,in turn,increase functional groups and reduce their harm to humans’health and the environment.To this aim,first,lignin was extracted from raw liquor.Next,the extracted lignin was reacted with diethylenetriamine(DETA)and ethylenediamine(EDA).Finally,the Mannich method was used for the reaction between amine lignin and propylene carbonate.The results of the Fourier Transform Infrared(FTIR)spectroscopy analysis showed that modification with DETA led to more structural change in lignin and peak 1100 indicates the presence of C–O bond related to urethane bonds in modified lignin.Moreover,adding propylene carbonate to aminated lignin did not result in much change in the results of the FTIR analysis.Additionally,urethane bonds can be seen in the results of GPC at 400℃–500℃.Furthermore,a slight decrease in thermal stability was observed in lignin modified with amine and propylene carbonate,compared to the raw lignin sample.
文摘This brief article reviews a very particular and quite narrowfield,namely what has been done and what is needed to know for tannin adhesives for wood panels to succeed industrially.The present fashionable focus on bioadhe-sives has led to producing chemical adhesive formulations and approaches for tannin adhesives as a subject of academic publications.These,as good and original they might be,are and will still remain a rather empty aca-demic exercise if not put to the test of real industrial trials and industrial use.They will remain so without the“little”secrets and techniques outlined here that show that there is a great gap between developing an adhesive formulation in the laboratory and the hard reality to make it work where it does really count,in its industrial application.It outlines the fact that even more modern and excellent,newly developed bioadhesive formulations might well miserably fail once tried in the industry if the problems that always arise in their upgrading are not identified and solved,and solved well.It also outlines the fact that not only must costs always be taken into account and that a practical and possibly easy-to-handle approach must always be used,but too expensive or complex and unyielding adhesive systems are also often shown to be unusable or unsuitable in industry.
基金supported by the National Natural Science Foundation of China(31660176)the Yunnan Provincial Natural Science Foundation(202201AU070222)and Scientific Research Fund Project of Yunnan Provincial Department of Education(2022J0490)+1 种基金financed by the ERA-CoBioTech Project WooBAdh(Environmentally-friendly bioadhesives from renewable resources)by the Slovenian Ministry of Education.Science and Sport and the Slovenian Research Agency within the Framework of the Program P4-0015.
文摘Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves,reasonable price and outstanding environmental features.But their poor water resistance,low bonding strength and intolerance to mold are major drawbacks,so that proper modification before use is essential.Glutaraldehyde is one of the more apt cross-linking agents for soybean protein adhesives,which can effectively improve the bonding strength and water resistance of the adhesive.Equally,glutaraldehyde is also an efficient and broad-spectrum fungicide that can significantly improve the anti-fungal properties of a soy protein adhesive.In the work presented here,matrix assisted laser desorption ionization(MALDI-ToF)mass spectrometry and Fourier transform infrared spectroscopy techniques were used to analyze the reaction mechanism of glutaraldehyde cross-linking soybean protein.The results confirmed the reaction of the aldehyde group with amino groups of the side chains and the amide groups of the peptide linkages constituting the skeletal chain of the protein.The laboratory plywood and particleboard bonded with glutaraldehyde-soy bean protein adhesives were prepared to determine the adhesive bonding properties,the dry strength,24 h cold water soaking wet strength and 3 h hot water(63°C)wet strength of plywood were 2.03,1.13 and 0.75 MPa,respectively,which satisfied the requirements of industrial production.
文摘Wood plays a major role in the production of furniture and wooden structures.Nevertheless,in this process,the massive use of adhesives and plural connectors remains a definite problem for health and the environment.Therefore,wood welding is a breakthrough in this respect.This paper reviews the applications of wood welding in furniture and construction and then examines advances in improving the durability of welded wood against water.Our contribution also highlights the need to join African tropical woods using the rotational friction welding technique.According to our results,these woods present interesting chemical singularities,which could provide solutions to the water vulnerability of the welded wood.Moreover,the use of such a joining method would first free the Cameroonian furniture industry from the chemical industry,secondly position it at the forefront of new eco-design trends and thirdly make it competitive with other countries in the Central African sub-region.These works enrich the long and rich bibliography on the technique of wood welding,which has long been conspicuous by its absence of tropical woods.
基金supported by a grant of the French Agence Nationale de la Recherche(ANR)in the Ambit of the Laboratory of Excellence(Labex)ARBRE.This work was also supported by“The 111 Project(D21027)”.
文摘Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)particleboard coating was then prepared by reacting raw tannin extract with aminated tannin extract and thus cross-linking the two by substituting tannin’s hydroxyl groups with the–NH_(2)groups on the aminated tannin to form–NH-bridges between the two.The resulting particleboard coating gave encouraging results when pressed at 180℃for 3 min.Conversely,the system in which tannin was reacted/cross-liked with urea(ATU)by a similar amination reaction did not perform as well as the ATT system,and this even when a higher curing temperature and longer hot press time were used.In particular its water repellence was worse probably due to the presence of urea and such a system with lower reactivity.Nonetheless,substituting the tannin–OHs with the urea–NH_(2)groups appeared to also take place.ATT gave better results than ATU as regards water repellence and mechanical resistance as shown by the cross cut test.The ATT system was shown to be between 95%and 98%biosourced.The difference appeared to be due,by TMA analysis,to the much faster formation of the ATT hardened network leading to a better cross-linked polymer coating.The chemical species formed for both the ATT and ATU system were studied by MALDI ToF and CP MAS^(13)C NMR.
文摘Soy flour(SF),soy protein and soy protein isolates(SPI)have been the focus of increasing research on their application as new materials for a variety of applications,mainly for wood adhesives and other resins.Tannins too have been the focus of increasing research for similar applications.While both materials are classed as non-toxic and have achieved interesting results the majority of the numerous and rather inventive approaches have still relied on some sort of hardeners or cross-linkers to bring either of them or even their combination to achieve acceptable results.The paper after a presentation of the two materials and their characteristics concentrates on the formation of gels,gelling and even hardening in the case of soy-tannin combined resins.The chapter than finishes with details of the formation of resins giving suitable wood adhesive of acceptable performance by the covalent coreaction of soy protein and tannin without any other hardener,thus totally bio-sourced,non-toxic and environment friendly as a base of further advances to expect in future by these two materials combination.
基金financed under the scheme of Laboratory of Excellence ARBRE by the French Agence Nationale de la Recherche(ANR).
文摘This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF analysis of the reaction of the MUF resin with citric acid.The preliminary results of the physical and mechanical properties of the LVL prepared are also presented.Veneers from Populus sp were used to manufacture 5-layer laminated veneer lumber(LVL)of small dimensions.Five combinations of the amount of citric acid,MUF spread rate and pressing parameters were tested.LVL bonded with 20%of citric acid+100 g/m^(2)of MUF,hot-pressed using a 3-step process with maximum 1.5 MPa of pressure yielded the board with better dimensional stability and mechanical properties.It could be concluded that citric acid in combination with MUF can be used for bonding wood veneer and the research should be continued to study further the parameters involved and to enhance the results.
基金supported by a grant overseen by the French National Research Agency(ANR)as part of the“Investissements d’Avenir”Program(ANR-11-LABX-0002-01,Lab of Excellence ARBRE).
文摘Furfurylation is a well-known wood modification technology.This paper studied the effect of tannin addition on the wood furfurylation.Three kinds of dicarboxylic acids,adipic acid,succinic acid,and tartaric acid,as well as glyoxal as a comparing agent,were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification.Impregnation of furanic or tannin-furanic solution at a certain concentration into the wood followed with curing at 103℃for a specific duration was performed for the wood modification.Different properties of the modified woods like dimensional stability,resistance of treatment to leaching,mechanical properties,decay durability against white-rot(Coriolus versicolor,Pycnoporus sanguineus)and brown-rot(Coniophora puteana)as well as their chemical and anatomical characteristics were evaluated.Results revealed that the partial substitution of FA by the tannins improved the fixation of the chemicals impregnated in wood.Further,dimensional stability,leaching resistance,Brinell hardness,modulus of elasticity/modulus of rupture,and decay durability properties of the furfurylated wood were also improved in the presence of tannins.Scanning electron microscopy revealed the deposition of the polymer in the wood lumen cells and in the wood cell walls.
基金The Malaysia-France Bilateral Research Collaboration Project Grant 2021 (MATCH 2021)funded this research work,MOHE-Fire-Resistant and Water-Repellent Tannin-Furanic-Fatty Acid Biofoams。
文摘Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams.Glycerol,while initially added to control the reaction temperature,was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams.Acetaldehyde was used as the cross-linking agent instead of formaldehyde,as it showed a better performance with the esterified tannin.The compression results showed a significant decrease of the Modulus of Elasticity(MOE)of the flexible foams in relation to that of the rigid foams,confirming their flexible character.The lauryl-and palmitoyl-esterified biofoams presented similar mechanical properties,while the oleyl-esterified biofoam presented different mechanical and morphological result not really showing the expected flexibility.Both the esterified rigid and flexible tannin-based biofoams showed good water resistance and their sessile drop contact angle analysis as a function of time confirmed this characteristic.Scanning Electron Microscope(SEM)analysis showed the flexible foams to present a higher proportion of closed cells than the rigid foams.Conversely,the cells depth of the flexible foams was lower than that of the rigid foam.As regards their thermal resistance,the flexible foams showed a slight loss of mass compared to the rigid ones without glycerol.Both types of foams presented much lower surface friability of non-esterified rigid foams.
文摘The influence of nanolignin coupling bio-agent on some characteristics of polypropylene-wood flour composites was studied.Thus,nanolignin was prepared by the acidic method,and then different ratios of it(0,1,3 and 5 wt%)were added to a polypropylene-wood flour mixture.After mechanically mixing wood flour,nanolignin,and polypropylene,the mixture was injection molded.ASTM methods were used to measure the structural properties of nanolignin,and prepared composites’water absorption,thickness swelling,bending modulus,and bending,tensile and impact strengths.Transforming the original lignin to nanolignin did not change the chemical bonds of the material.The addition of nanolignin yielded improved mechanical and physical properties of the composites prepared.Higher strength and dimensional stability are presented by nanolignin-containing composites when comparing them with those prepared with normal lignin.Nanolignin was shown by SEM(Scanning Electron Microscope)observation to be uniformly dispersed within the polymer matrix.Wood polymer composites(WPCs)with nanolignin exhibited comparable properties with the control samples prepared using maleic anhydride polypropylene(MAPP).
基金supported by a Grant of the French Agence Nationale de la Recherche(ANR)in the Ambit of the Laboratory of Excellence(Labex)ARBREsupported by“The 111 Project(D21027)”.
文摘Melamine-dialdehyde starch resins used for wood surface finishes have been developed.The reaction of melamine with dialdehyde starch has been shown to occur by FTIR and MALDI ToF spectrometry,with several oligomer species due to the reaction of the two materials being identified,and the resin thermal stability was studied by thermogravimetric analysis.The resins were prepared by two different procedures when it was realized that dialdehyde starch is sensitive to too high a temperature for prolonged times.The melamine-dialdehyde starch resins were applied on particleboard supports as a direct liquid surface finish and a resin-impregnated paper.The surface finishes were tested for adhesion by the cross-cut test,their initial sessile drop contact angle,and the contact angle evolution as a function of time.The best results were obtained by the resins catalyzed by 2% ammonium sulfate and applied to the support surface as a resin-impregnated paper hot pressed for 3 min at 200℃,although the results at 180℃ also looked promising.