Yields of rice (<em>Oryza sativa</em> L.) respond to complex interactions between the genotype and the environment;rice has the particularity of being a semi-aquatic crop, and as a result of this, it prese...Yields of rice (<em>Oryza sativa</em> L.) respond to complex interactions between the genotype and the environment;rice has the particularity of being a semi-aquatic crop, and as a result of this, it presents lower adaptation to the limiting water content of soil and is extremely sensitive to stress from drought;therefore, it is the most important limiting factor in rice production. The objective of this study was to research the physiological response of rice genotypes to water stress. The grain yield and its components, leaf area and transpiration efficiency under irrigation (I) and drought (D) were evaluated in eight advanced lines from the nursery of the Latin American Fund for Irrigated Rice (Fondo Latinoamericano para Arroz de Riego, FLAR) and a control variety of rice. The experiment was established in Campeche, in the 2015 autumn-winter cycle. The grain yield and its components, as well as the leaf area were greater under irrigation conditions than under drought. The transpiration from the water stress was reduced and the plants under drought increased their transpiration efficiency. The genotypes P-V 2006 and P-V 2009 were identified, with genealogies FL05392-3P-12-2P-2P-M and FL08224-3P-2-1P-3P-M, respectively, as the most outstanding compared to the rest of the genotypes in the grain yield and its components, leaf area, total root biomass, and transpiration efficiency.展开更多
The present work took place in the central and northern regions of the state of Campeche, Mexico. The grain yield was evaluated in a total of 46 materials, comprising 30 of white grain and 16 of yellow grain. The crop...The present work took place in the central and northern regions of the state of Campeche, Mexico. The grain yield was evaluated in a total of 46 materials, comprising 30 of white grain and 16 of yellow grain. The crop was supplied to a greater extent with rainwater from the months of July to November. The sowing was in trials designed to evaluate grain yield and technology validation lots established for demonstration purposes. To integrate a genetic material into this study, it was a fundamental requirement that it had at least four evaluations considering different locations or years. As a result of the above, it was determined that there are 27 hybrids of white grain and 14 of yellow grain, which constitute options for the producer with which it is possible to obtain yields of 4.1 to 6.0 t⋅ha−1 and that can make corn a profitable crop under the current conditions of technology application. Of the white grain hybrids, the group formed by SB-309, DK-395, DK-393, DAS-2382, SP-500, DK-390, P4082W, 9209W, P3966W, SORENTO, JC-25, LUCINO, and 9401W was considered as the high productivity stratum, whose average yield is 5.1 to 5.9 t⋅ha−1. Similarly, in the yellow grain hybrids, the group formed 9107Y, SP-525A, 2B688, DK-7500, P4226A, IMPACT and DK-7088, was considered as the high productivity stratum, whose average yield fluctuated from 5.0 to 5.9 t⋅ha−1.展开更多
文摘Yields of rice (<em>Oryza sativa</em> L.) respond to complex interactions between the genotype and the environment;rice has the particularity of being a semi-aquatic crop, and as a result of this, it presents lower adaptation to the limiting water content of soil and is extremely sensitive to stress from drought;therefore, it is the most important limiting factor in rice production. The objective of this study was to research the physiological response of rice genotypes to water stress. The grain yield and its components, leaf area and transpiration efficiency under irrigation (I) and drought (D) were evaluated in eight advanced lines from the nursery of the Latin American Fund for Irrigated Rice (Fondo Latinoamericano para Arroz de Riego, FLAR) and a control variety of rice. The experiment was established in Campeche, in the 2015 autumn-winter cycle. The grain yield and its components, as well as the leaf area were greater under irrigation conditions than under drought. The transpiration from the water stress was reduced and the plants under drought increased their transpiration efficiency. The genotypes P-V 2006 and P-V 2009 were identified, with genealogies FL05392-3P-12-2P-2P-M and FL08224-3P-2-1P-3P-M, respectively, as the most outstanding compared to the rest of the genotypes in the grain yield and its components, leaf area, total root biomass, and transpiration efficiency.
文摘The present work took place in the central and northern regions of the state of Campeche, Mexico. The grain yield was evaluated in a total of 46 materials, comprising 30 of white grain and 16 of yellow grain. The crop was supplied to a greater extent with rainwater from the months of July to November. The sowing was in trials designed to evaluate grain yield and technology validation lots established for demonstration purposes. To integrate a genetic material into this study, it was a fundamental requirement that it had at least four evaluations considering different locations or years. As a result of the above, it was determined that there are 27 hybrids of white grain and 14 of yellow grain, which constitute options for the producer with which it is possible to obtain yields of 4.1 to 6.0 t⋅ha−1 and that can make corn a profitable crop under the current conditions of technology application. Of the white grain hybrids, the group formed by SB-309, DK-395, DK-393, DAS-2382, SP-500, DK-390, P4082W, 9209W, P3966W, SORENTO, JC-25, LUCINO, and 9401W was considered as the high productivity stratum, whose average yield is 5.1 to 5.9 t⋅ha−1. Similarly, in the yellow grain hybrids, the group formed 9107Y, SP-525A, 2B688, DK-7500, P4226A, IMPACT and DK-7088, was considered as the high productivity stratum, whose average yield fluctuated from 5.0 to 5.9 t⋅ha−1.