The Himalayan high-altitude eco-regions exhibit higher plant species diversity, and several environmental factors play a crucial role in shaping species distribution and diversity. The aim of the present study is to i...The Himalayan high-altitude eco-regions exhibit higher plant species diversity, and several environmental factors play a crucial role in shaping species distribution and diversity. The aim of the present study is to investigate the floristic composition, distribution of endemic, threatened and native taxa across the elevation zones and the effect of various environmental factors on species richness pattern along the elevation gradient in Pangi, a remote highaltitude region of Himalaya. We conducted extensive field surveys covering 31 localities and established elevational transects for assessing species distribution and the factors affecting thereof. Additionally, information on nativity, endemism, and IUCN red-list categories of threatened species were compiled from published and online resources. Data were analysed using regression model and Non-Metric MultiDimensional Scaling(NMDS). In the present study, we recorded a total of 771 plant species across the region. In regression model, the elevation and anthropogenic variables and their interaction showed significant negative effects on the species richness. Species richness was found to decrease with the increasing elevation, showing a humped shaped pattern, with maximum richness observed in the mid-elevations(2,400m to 3,300m above sea level). The pattern of distribution of native and non-native species along the elevation gradient showed opposite trends, and proportion of native species increased towards the higher elevations. Further, NMDS ordination suggests that zone-Ⅰ(2,100-2,500m asl) and zone-Ⅴ(4,001-4,500m asl) had highest differences in species composition, while zone-Ⅰ, zone-Ⅱ(2,501-3,000m asl), and zone-Ⅲ(3,001-3,500m asl) showed higher affinity with respect to their species composition. Thus, the present study revealed that remote and hitherto un-explored Pangi eco-region is rich in floristic diversity and provides pertinent information on the species distribution and composition, and various underlying factors influencing the richness patterns, which is necessary for framing suitable conservation strategies, management plans and futuristic population studies.展开更多
基金supported by financial grants from Council of Scientific and Industrial Research, India, in the form of projects entitled “Conservation and sustainable resource generation of high altitude bioresources at CSIR-Centre for High Altitude Biology (MLP-0145)”, “Conservation of threatened species of India (MLP-0172)” and In-house project MLP-0205Indian Council of Medical Research (ICMR) for providing financial support as Senior Research Fellow (SRF) scholarship
文摘The Himalayan high-altitude eco-regions exhibit higher plant species diversity, and several environmental factors play a crucial role in shaping species distribution and diversity. The aim of the present study is to investigate the floristic composition, distribution of endemic, threatened and native taxa across the elevation zones and the effect of various environmental factors on species richness pattern along the elevation gradient in Pangi, a remote highaltitude region of Himalaya. We conducted extensive field surveys covering 31 localities and established elevational transects for assessing species distribution and the factors affecting thereof. Additionally, information on nativity, endemism, and IUCN red-list categories of threatened species were compiled from published and online resources. Data were analysed using regression model and Non-Metric MultiDimensional Scaling(NMDS). In the present study, we recorded a total of 771 plant species across the region. In regression model, the elevation and anthropogenic variables and their interaction showed significant negative effects on the species richness. Species richness was found to decrease with the increasing elevation, showing a humped shaped pattern, with maximum richness observed in the mid-elevations(2,400m to 3,300m above sea level). The pattern of distribution of native and non-native species along the elevation gradient showed opposite trends, and proportion of native species increased towards the higher elevations. Further, NMDS ordination suggests that zone-Ⅰ(2,100-2,500m asl) and zone-Ⅴ(4,001-4,500m asl) had highest differences in species composition, while zone-Ⅰ, zone-Ⅱ(2,501-3,000m asl), and zone-Ⅲ(3,001-3,500m asl) showed higher affinity with respect to their species composition. Thus, the present study revealed that remote and hitherto un-explored Pangi eco-region is rich in floristic diversity and provides pertinent information on the species distribution and composition, and various underlying factors influencing the richness patterns, which is necessary for framing suitable conservation strategies, management plans and futuristic population studies.