期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Substrate Evolution to Microstructural and Optoelectrical Properties of Evaporated CdS Thin Films Correlated with Elemental Composition 被引量:2
1
作者 anuradha purohit Himanshu +2 位作者 S.L.Patel S.Chander M.S.Dhaka 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第9期1307-1316,共10页
A typical high-e fficiency solar cell device needs the best lattice matching between different constituent layers to mitigate the open-circuit voltage loss. In the present work, the physical properties of CdS thin fil... A typical high-e fficiency solar cell device needs the best lattice matching between different constituent layers to mitigate the open-circuit voltage loss. In the present work, the physical properties of CdS thin films are investigated where films with 100 nm thickness were fabricated on the different types of substrates viz. soda–lime glass, indium-doped tin oxide(ITO)-and fl uorine-doped tin oxide(FTO)-coated glass substrates, and silicon wafer using electron beam evaporation. The X-ray diffraction patterns confirmed that deposited thin films showed cubic phase and had(111) as predominant orientation where the structural parameters were observed to be varied with nature of substrates. The ohmic behaviour of the CdS films was disclosed by current–voltage characteristics, whereas the scanning electron microscopy micrograph revealed the uniform deposition of the CdS films with the presence of round-shaped grains. The elemental analysis confirmed the CdS films deposition where the Cd/S weight percentage ratio was changed with nature of substrates. The direct energy band gap was observed in the 1.63–2.50 eV range for the films grown on different substrates. The investigated properties of thin CdS layers demonstrated that the selection of substrate(in terms of nature) during device fabrication plays a crucial role. 展开更多
关键词 CdS thin films Substrate evolution E-beam evaporation Microstructural properties Optoelectrical properties
原文传递
Thickness Dependent Physical Properties of Thermally Evaporated Nanocrystalline CdSe Thin Films 被引量:1
2
作者 anuradha purohit Subhash Chander +1 位作者 Satya Pal Nehra Mahendra Singh Dhaka 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第10期1299-1304,共6页
This paper presents a study on thickness dependent physical properties of cadmium selenide thin films. The films of thickness 445, 631 and 810 nm were deposited employing thermal evaporation technique on glass and ITO... This paper presents a study on thickness dependent physical properties of cadmium selenide thin films. The films of thickness 445, 631 and 810 nm were deposited employing thermal evaporation technique on glass and ITO-coated glass substrates followed by thermal annealing in air atmosphere at 200 °C. These films were subjected to X-ray diffractometer, UV-Vis spectrophotometer, scanning electron microscopy(SEM) and electrometer for structural, optical,surface morphological and electrical analysis respectively. The structural analysis reveals that the films are nanocrystalline in nature with cubic phase and preferred orientation(111). The crystallographic parameters such as lattice constant, interplanar spacing, grain size, internal strain, dislocation density, number of crystallites per unit area and texture coefficient are calculated and discussed. The optical band gap is found in the range 1.75-1.92 e V and observed to increase with thickness.The SEM study shows that the annealed films are uniform, fully covered and well defined. The electrical analysis shows that the conductivity is varied with film thickness and found within the order of semiconductor behavior. 展开更多
关键词 Thin films X-ray diffraction Optical properties Electrical properties EVAPORATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部