Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens...Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries.展开更多
BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to in...BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to investigate the association between OBS and mortality in hypertensive patients.METHODS This study included 7823 hypertensive patients from the National Health and Nutrition Examination Survey(NHA-NES)1999-2014.Several models,including Cox regression,restricted cubic splines(RCS),Kaplan-Meier survival analysis,subgroup,and sensitivity analyses,were exploited to investigate the relationship between OBS and the risk of mortality.RESULTS Controlling for all potential confounders,a significantly inverse association was observed between elevated OBS and all-cause[hazard ratio(HR)=0.90,95%CI:0.85-0.95]and cardiovascular mortality(HR=0.85,95%CI:0.75-0.95).With adjustment for covariates,significant associations between lifestyle OBS and mortality risks diminished,whereas associations between dietary OBS and these mortality risks remained robust(all-cause mortality:HR=0.91,95%CI:0.86-0.96;cardiovascular mortality:HR=0.85,95%CI:0.76-0.96).RCS demonstrated a linear relationship between OBS and all-cause and cardiovascular mortality risk(P_(nonlinear)=0.088 and P_(nonlinear)=0.447,respectively).Kaplan-Meier curves demonstrated that the mortality rate was lower with a high OBS(P<0.001).The consistency of the association was demonstrated in subgroup and sensitivity analyses.RCS after stratification showed that among current drinkers,those with higher OBS had a lower risk of mortality compared with former or never drinkers.CONCLUSIONS In hypertensive individuals,there was a negative association between OBS and all-cause and cardiovascular mortality.Encouraging hypertensive individuals,especially those currently drinking,to maintain high levels of OBS may be beneficial in improving their prognosis.展开更多
Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-adde...Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges.展开更多
Brittleness is a dominant issue that restricts potential applications of Mg_2Si intermetallic compounds(IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility ...Brittleness is a dominant issue that restricts potential applications of Mg_2Si intermetallic compounds(IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg_2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg_2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10 wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg_2Si–Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100℃. When the content of Al reached 6 wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased.展开更多
High-temperature nuclear magnetic resonance(NMR)has proven to be very useful for detecting the temperatureinduced structural evolution and dynamics in melts.However,the sensitivity and precision of high-temperature NM...High-temperature nuclear magnetic resonance(NMR)has proven to be very useful for detecting the temperatureinduced structural evolution and dynamics in melts.However,the sensitivity and precision of high-temperature NMR probes are limited.Here we report a sensitive and stable high-temperature NMR probe based on laser-heating,suitable for in situ studies of metallic melts,which can work stably at the temperature of up to 2000 K.In our design,a well-designed optical path and the use of a water-cooled copper radio-frequency(RF)coil significantly optimize the signal-to-noise ratio(S/NR)at high temperatures.Additionally,a precise temperature controlling system with an error of less than±1 K has been designed.After temperature calibration,the temperature measurement error is controlled within±2 K.As a performance testing,^(27)Al NMR spectra are measured in Zr-based metallic glass-forming liquid in situ.Results show that the S/NR reaches 45 within 90 s even when the sample's temperature is up to 1500 K and that the isothermal signal drift is better than0.001 ppm per hour.This high-temperature NMR probe can be used to clarify some highly debated issues about metallic liquids,such as glass transition and liquid-liquid transition.展开更多
Sintering of polycrystalline diamond with selenium was investigated under pressure of 6.5-10.5 GPa at a constant temperature of 1850℃.A new carbon-selenium compound with a most plausible chemical formula of SeC and a...Sintering of polycrystalline diamond with selenium was investigated under pressure of 6.5-10.5 GPa at a constant temperature of 1850℃.A new carbon-selenium compound with a most plausible chemical formula of SeC and a WC-type hexagonal structure(space group P6m2)has been discovered in the recovered samples sintered at 10.5 GPa and 1850℃.Refined lattice parameters are as follows:a=2.9277(4)A,c=2.8620(4)A,V=21.245(4)A^3.The diamond compacts hot-pressed at 10.5 GPa have excellent mechanical properties with a Vickers hardness of about 68 GPa at a loading force of 19.6 N.Diamond intergrowths observed in these samples may have benefited from the catalytic effects of Se/SeC on the nucleation and crystal growth of diamond.展开更多
Jinjiang oyster Crassostrea ariakensis,a species with economic and ecological value,is distributed along the estuaries and coasts of East Asia.With the decline in natural resources,the conservation and aquaculture of ...Jinjiang oyster Crassostrea ariakensis,a species with economic and ecological value,is distributed along the estuaries and coasts of East Asia.With the decline in natural resources,the conservation and aquaculture of this species is urgent.However,studies characterizing their shell shape remain scarce.We investigated the morphological differences in the shells of wild Jinjiang oysters from six populations(Qinzhou,Shanghai,Nantong,Qingdao,and Binzhou hard or muddy bottom)along the coast of China.The color of the shell and adductor muscle scar showed associations with temperature gradient along its geographical distribution.Oyster shape was defined by shell height to shell length ratio,and the ratio varies among geographic locations of the populations.They were found nearly round(Qinzhou and Nantong populations),oval(Qingdao and Binzhou populations),or water-droplet-shaped(Shanghai population).Binzhou populations living on muddy substrates are more elongated than those on hard substrate.In addition,we developed a method to measure the cavity volume in oysters.Correlation and path analysis showed that shell height significantly influenced cavity volume.The synergistic effect of the two factors(the height,length,and width of the shell in pairs)on the cavity volume resulted in differences between northern and southern groups:samples from the southern group(Qinzhou and Shanghai)showed correlation between shell height and shell width,while those from the northern group(Nantong,Qingdao,and Binzhou)showed correlation between shell height and shell length.All populations showed significant correlation between shell height and cavity height,and shell length and cavity length,while the correlation between shell width and cavity width was minimal,which may have been resulted from uneven shell thickness.The linear equation for shell height and cavity volume under different ratios of shell height to length was obtained.In this study,we determined that shell height has the most influence on cavity volume,and specific cavity volume fitting linear equations are given for different shell types,which may provide a reference for future oyster breeding for shell shaping.展开更多
Thanks to the rapid development of naked-eye 3D and wireless communication technology,3D video related applications on mobile devices have attracted a lot of attention.Nevertheless,the time-varying characteristics of ...Thanks to the rapid development of naked-eye 3D and wireless communication technology,3D video related applications on mobile devices have attracted a lot of attention.Nevertheless,the time-varying characteristics of the wireless channel is very challenging for conventional source-channel coding based transmission strategy.Also,the high complexity of source-channel coding based transmission scheme is undesired for low power mobile terminals.An advanced transmission scheme named Softcast was proposed to achieve efficient transmission performance for 2D image/video.Unfortunately,it cannot be directly applied to wireless 3D video transmission with high efficiency.This paper proposes a more efficient soft transmission scheme for 3D video with a graceful quality adaptation within a wide range of channel Signal-to-Noise Ratio(SNR).The proposed method first extends the linear transform to 4 dimensions with additional view dimension to eliminate the view redundancy,and then metadata optimization and chunk interleaving are designed to further improve the transmission performance.Meanwhile,a synthesis distortion based chunk discard strategy is developed to improve the overall 3D video quality under the condition of limited bandwidth.The experimental results demonstrate that the proposed method significantly improves the 3D video transmission performance over the wireless channel for low power and low complexity scenarios.展开更多
Colloidal quantum dots(CQDs)are of great interest to photovoltaic(PV)technologies as they possess the benefits of solution-processability,size-tunability,and roll-to-roll manufacturability,as well as unique capabiliti...Colloidal quantum dots(CQDs)are of great interest to photovoltaic(PV)technologies as they possess the benefits of solution-processability,size-tunability,and roll-to-roll manufacturability,as well as unique capabilities to harvest near-infrared(NIR)radiation.During the last decade,lab-scale CQD solar cells have achieved rapid improvement in the power conversion efficiency(PCE)from~1%to 18%,which will potentially exceed 20%in the next few years and approach the performance of other PV technologies,such as perovskite solar cells and organic solar cells.In the meanwhile,CQD solar cells exhibit long lifetimes either under shelf storage or continuous operation,making them highly attractive to industry.However,in order to meet the industrial requirements,mass production techniques are necessary to scale up the fabrication of those lab devices into large-area PV modules,such as roll-to-toll coating.This paper reviews the recent developments of large-area CQD solar cells with a focus on various fabrication methods and their principles.It covers the progress of typical large-area coating techniques,including spray coating,blade coating,dip coating,and slot-die coating.It also discusses next steps and new strategies to accomplish the ultimate goal of the low-cost large-area fabrication of CQD solar cells and emphasizes how artificial intelligence or machine learning could facilitate the developments of CQD solar cell research.展开更多
基金supported by the National Natural Science Youth Fund of China(52302247)the Natural Youth Science Foundation of Hunan Province(2022JJ40070)。
文摘Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries.
基金supported by the National Natural Science Foundation of China(No.81960074)the Natural Science Foundation-Outstanding Youth Fund Project of Jiangxi Province(No.20232ACB216006)。
文摘BACKGROUND Oxidative stress is closely associated with hypertensive outcomes.The oxidative balance score(OBS)measures oxidative stress exposure from dietary and lifestyle elements.The objective of this study was to investigate the association between OBS and mortality in hypertensive patients.METHODS This study included 7823 hypertensive patients from the National Health and Nutrition Examination Survey(NHA-NES)1999-2014.Several models,including Cox regression,restricted cubic splines(RCS),Kaplan-Meier survival analysis,subgroup,and sensitivity analyses,were exploited to investigate the relationship between OBS and the risk of mortality.RESULTS Controlling for all potential confounders,a significantly inverse association was observed between elevated OBS and all-cause[hazard ratio(HR)=0.90,95%CI:0.85-0.95]and cardiovascular mortality(HR=0.85,95%CI:0.75-0.95).With adjustment for covariates,significant associations between lifestyle OBS and mortality risks diminished,whereas associations between dietary OBS and these mortality risks remained robust(all-cause mortality:HR=0.91,95%CI:0.86-0.96;cardiovascular mortality:HR=0.85,95%CI:0.76-0.96).RCS demonstrated a linear relationship between OBS and all-cause and cardiovascular mortality risk(P_(nonlinear)=0.088 and P_(nonlinear)=0.447,respectively).Kaplan-Meier curves demonstrated that the mortality rate was lower with a high OBS(P<0.001).The consistency of the association was demonstrated in subgroup and sensitivity analyses.RCS after stratification showed that among current drinkers,those with higher OBS had a lower risk of mortality compared with former or never drinkers.CONCLUSIONS In hypertensive individuals,there was a negative association between OBS and all-cause and cardiovascular mortality.Encouraging hypertensive individuals,especially those currently drinking,to maintain high levels of OBS may be beneficial in improving their prognosis.
基金supported by the Fundamental Research Funds for the Central Universities of Southwest Jiaotong University,supported by Sichuan Science and Technology Program(2021YFS0284).
文摘Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0700500)the National Natural Science Foundation of China (No. 51574027)
文摘Brittleness is a dominant issue that restricts potential applications of Mg_2Si intermetallic compounds(IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg_2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg_2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10 wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg_2Si–Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100℃. When the content of Al reached 6 wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased.
基金Project supported by the Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YZ201639)the National Key R&D Program of China(Grant No.2018YFA0703604)+1 种基金the National Natural Science Foundation of China(Grant Nos.51922102,92163108,and 52071327)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR18E010002)。
文摘High-temperature nuclear magnetic resonance(NMR)has proven to be very useful for detecting the temperatureinduced structural evolution and dynamics in melts.However,the sensitivity and precision of high-temperature NMR probes are limited.Here we report a sensitive and stable high-temperature NMR probe based on laser-heating,suitable for in situ studies of metallic melts,which can work stably at the temperature of up to 2000 K.In our design,a well-designed optical path and the use of a water-cooled copper radio-frequency(RF)coil significantly optimize the signal-to-noise ratio(S/NR)at high temperatures.Additionally,a precise temperature controlling system with an error of less than±1 K has been designed.After temperature calibration,the temperature measurement error is controlled within±2 K.As a performance testing,^(27)Al NMR spectra are measured in Zr-based metallic glass-forming liquid in situ.Results show that the S/NR reaches 45 within 90 s even when the sample's temperature is up to 1500 K and that the isothermal signal drift is better than0.001 ppm per hour.This high-temperature NMR probe can be used to clarify some highly debated issues about metallic liquids,such as glass transition and liquid-liquid transition.
基金National Natural Science Foundation of China(Grant No.51402245)Fundamental Research Funds for the Central Universities of China(Grant No.2682016CX062)+6 种基金China Scholarship Council(Grant No.201707005071)Shenzhen Peacock Plan(Grant No.KQTD2016053019134356)Guangdong Innovative&Entrepreneurial Research Team Program(Grant No.2016ZT06C279)HPCAT operations are supported by US DOE/NNSA under Award No.DE-NA0001974DOE-BES under Award No.DE-FG02-99ER45775partial instrumentation funding by NSFAPS is supported by DOE-BES under Contract No.DE-AC02-06CH11357。
文摘Sintering of polycrystalline diamond with selenium was investigated under pressure of 6.5-10.5 GPa at a constant temperature of 1850℃.A new carbon-selenium compound with a most plausible chemical formula of SeC and a WC-type hexagonal structure(space group P6m2)has been discovered in the recovered samples sintered at 10.5 GPa and 1850℃.Refined lattice parameters are as follows:a=2.9277(4)A,c=2.8620(4)A,V=21.245(4)A^3.The diamond compacts hot-pressed at 10.5 GPa have excellent mechanical properties with a Vickers hardness of about 68 GPa at a loading force of 19.6 N.Diamond intergrowths observed in these samples may have benefited from the catalytic effects of Se/SeC on the nucleation and crystal growth of diamond.
基金Supported by the Key R&D Program Project of Shandong Province (No.2021LZGC029)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA23050402)+3 种基金the Young Elite Scientists Sponsorship Program by China Association of Science and Technology (No.2021QNRC001)the Technology and the Modern Agroindustry Technology Research System (No.CARS-49)the Innovation Capacity Improvement Project of Small and Medium-Sized Technology-Based Enterprise of Shandong Province (No.2022TSGC1125)the Key Technology Research and Industrialization Demonstration Projects of Qingdao,China (No.22-3-3-hygg-2-hy)。
文摘Jinjiang oyster Crassostrea ariakensis,a species with economic and ecological value,is distributed along the estuaries and coasts of East Asia.With the decline in natural resources,the conservation and aquaculture of this species is urgent.However,studies characterizing their shell shape remain scarce.We investigated the morphological differences in the shells of wild Jinjiang oysters from six populations(Qinzhou,Shanghai,Nantong,Qingdao,and Binzhou hard or muddy bottom)along the coast of China.The color of the shell and adductor muscle scar showed associations with temperature gradient along its geographical distribution.Oyster shape was defined by shell height to shell length ratio,and the ratio varies among geographic locations of the populations.They were found nearly round(Qinzhou and Nantong populations),oval(Qingdao and Binzhou populations),or water-droplet-shaped(Shanghai population).Binzhou populations living on muddy substrates are more elongated than those on hard substrate.In addition,we developed a method to measure the cavity volume in oysters.Correlation and path analysis showed that shell height significantly influenced cavity volume.The synergistic effect of the two factors(the height,length,and width of the shell in pairs)on the cavity volume resulted in differences between northern and southern groups:samples from the southern group(Qinzhou and Shanghai)showed correlation between shell height and shell width,while those from the northern group(Nantong,Qingdao,and Binzhou)showed correlation between shell height and shell length.All populations showed significant correlation between shell height and cavity height,and shell length and cavity length,while the correlation between shell width and cavity width was minimal,which may have been resulted from uneven shell thickness.The linear equation for shell height and cavity volume under different ratios of shell height to length was obtained.In this study,we determined that shell height has the most influence on cavity volume,and specific cavity volume fitting linear equations are given for different shell types,which may provide a reference for future oyster breeding for shell shaping.
基金supported in part by the National Natural Science Foundation of China under Grant 61501074.
文摘Thanks to the rapid development of naked-eye 3D and wireless communication technology,3D video related applications on mobile devices have attracted a lot of attention.Nevertheless,the time-varying characteristics of the wireless channel is very challenging for conventional source-channel coding based transmission strategy.Also,the high complexity of source-channel coding based transmission scheme is undesired for low power mobile terminals.An advanced transmission scheme named Softcast was proposed to achieve efficient transmission performance for 2D image/video.Unfortunately,it cannot be directly applied to wireless 3D video transmission with high efficiency.This paper proposes a more efficient soft transmission scheme for 3D video with a graceful quality adaptation within a wide range of channel Signal-to-Noise Ratio(SNR).The proposed method first extends the linear transform to 4 dimensions with additional view dimension to eliminate the view redundancy,and then metadata optimization and chunk interleaving are designed to further improve the transmission performance.Meanwhile,a synthesis distortion based chunk discard strategy is developed to improve the overall 3D video quality under the condition of limited bandwidth.The experimental results demonstrate that the proposed method significantly improves the 3D video transmission performance over the wireless channel for low power and low complexity scenarios.
基金supported by the National Natural Science Foundation of China under Grants No.11774304,No.61905206,No.12064048,and No.11804294.
文摘Colloidal quantum dots(CQDs)are of great interest to photovoltaic(PV)technologies as they possess the benefits of solution-processability,size-tunability,and roll-to-roll manufacturability,as well as unique capabilities to harvest near-infrared(NIR)radiation.During the last decade,lab-scale CQD solar cells have achieved rapid improvement in the power conversion efficiency(PCE)from~1%to 18%,which will potentially exceed 20%in the next few years and approach the performance of other PV technologies,such as perovskite solar cells and organic solar cells.In the meanwhile,CQD solar cells exhibit long lifetimes either under shelf storage or continuous operation,making them highly attractive to industry.However,in order to meet the industrial requirements,mass production techniques are necessary to scale up the fabrication of those lab devices into large-area PV modules,such as roll-to-toll coating.This paper reviews the recent developments of large-area CQD solar cells with a focus on various fabrication methods and their principles.It covers the progress of typical large-area coating techniques,including spray coating,blade coating,dip coating,and slot-die coating.It also discusses next steps and new strategies to accomplish the ultimate goal of the low-cost large-area fabrication of CQD solar cells and emphasizes how artificial intelligence or machine learning could facilitate the developments of CQD solar cell research.