Quasi-two dimensional(2D)perovskites have emerged as a promising class of materials due to their remarkable photoluminescence efficiency,which stems from their exceptionally high exciton binding energies.The spatial c...Quasi-two dimensional(2D)perovskites have emerged as a promising class of materials due to their remarkable photoluminescence efficiency,which stems from their exceptionally high exciton binding energies.The spatial confinement of excitons within smaller grain sizes could enhance the formation of biexcitons leading to higher radiative recombination efficiency.However,the synthesis of high-quality quasi-2D perovskite thin films with controllable grain sizes remains a challenging task.In this study,we present a facile method for achieving quasi-2D perovskite thin films with controllable grain sizes ranging from 500 to 900 nm.This is accomplished by intermediate phase engineering during the film fabrication process.Our results demonstrate that quasi-2D perovskite films with smaller grain sizes exhibit more efficient bound exciton generation and a reduced stimulated emission threshold down to 15.89µJ cm^(−2).Furthermore,femtosecond transient absorption measurements reveal that the decay time of bound excitons is shorter in quasi-2D perovskites with smaller grain sizes compared to that of those with larger grains at the same pump density,which is 230.5 ps.This observation suggests a more efficient exciton recombination process in the smaller grain size regime.Our findings would offer a promising approach for the development of efficient bound exciton lasers.展开更多
基金supported by the National Natural Science Foundation of China(U21A20496 and 12104334)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20230011)+5 种基金the Research Program Supported by ShanxiZheda Institute of Advanced Materials and Chemical Engineering(2022SXTD020)the Central Government Guides Local Funds for Scientific and Technological Development(YDZJSX20231A010)the Natural Science Foundation of Shanxi Province(202203021222102)the State Key Laboratory Program of Quantum Optics and Quantum Optics Devices(KF202306)the support from a research grant(VIL50350)from VILLUM FONDEN,Denmark,the Swedish Research Council(2021-05319)the Swedish foundation of international cooperation in research and higher education(CH2019-8248)。
文摘Quasi-two dimensional(2D)perovskites have emerged as a promising class of materials due to their remarkable photoluminescence efficiency,which stems from their exceptionally high exciton binding energies.The spatial confinement of excitons within smaller grain sizes could enhance the formation of biexcitons leading to higher radiative recombination efficiency.However,the synthesis of high-quality quasi-2D perovskite thin films with controllable grain sizes remains a challenging task.In this study,we present a facile method for achieving quasi-2D perovskite thin films with controllable grain sizes ranging from 500 to 900 nm.This is accomplished by intermediate phase engineering during the film fabrication process.Our results demonstrate that quasi-2D perovskite films with smaller grain sizes exhibit more efficient bound exciton generation and a reduced stimulated emission threshold down to 15.89µJ cm^(−2).Furthermore,femtosecond transient absorption measurements reveal that the decay time of bound excitons is shorter in quasi-2D perovskites with smaller grain sizes compared to that of those with larger grains at the same pump density,which is 230.5 ps.This observation suggests a more efficient exciton recombination process in the smaller grain size regime.Our findings would offer a promising approach for the development of efficient bound exciton lasers.