期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Elucidating the promotion mechanism of the ternary cooperative heterostructure toward industrial-level urea oxidation catalysis
1
作者 Xiujuan Xu Xiaotong Wei +2 位作者 Liangliang Xu Minghua Huang arafat toghan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期116-125,I0005,共11页
From the perspective of electronic structure modulation,it is highly desirable to rationally design the active urea oxidation reaction(UOR)catalysts through interface engineering.The binary cooperative heterostructure... From the perspective of electronic structure modulation,it is highly desirable to rationally design the active urea oxidation reaction(UOR)catalysts through interface engineering.The binary cooperative heterostructure systems have been shown significant enhancement for catalyzing UOR,but their performance still remains unsatisfactory for industrialization because of the unfavorable intermediate adsorption/desorption and deficient electron transfer channels.In response,taking the ternary cooperative Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) heterostructure as the proof-of-concept paradigm,a catalytic model is rationally put forward to elucidate the UOR promotion mechanism at the molecular level.The rod-like Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) nanoarrays with three-phase heterojunction are experimentally fabricated on Ni foam(named as Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4)/NF)via simple two-step processes.The density functional theory calculations disclose that construction of Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4) heterostructure model not only induce charge redistribution at the interfacial region for creating innumerable electron transfer channels,but also endow it with a moderate d-band center that could help to build a balance between adsorption and desorption of diverse UOR intermediates.Benefiting from the unique rod-like nanoarrays with large specific surface area and the optimized electronic structure,the well-designed Ni_5P_(4)/NiSe_(2)/Ni_(3)Se_(4)/NF could act as a robust catalyst for driving UOR at industrial-level current densities under tough environments,offering great potential for commercial applications. 展开更多
关键词 Urea oxidation reaction Ternary cooperative heterostructure Electronic structure Interface engineering
下载PDF
Crown ether interlayer-modulated polyamide membrane with nanoscale structures for efficient desalination
2
作者 Yanyu Zhao Xiangju Song +2 位作者 Minghua Huang Heqing Jiang arafat toghan 《Nano Research》 SCIE EI CSCD 2023年第5期6153-6159,共7页
Nanoscale thin-film composite(TFC)polyamide membranes are highly desirable for desalination owing to their excellent separation performance.It is a permanent pursuit to further improve the water flux of membrane witho... Nanoscale thin-film composite(TFC)polyamide membranes are highly desirable for desalination owing to their excellent separation performance.It is a permanent pursuit to further improve the water flux of membrane without deteriorating the salt rejection.Herein,we fabricated a high-performance polyamide membrane with nanoscale structures through introducing multifunctional crown ether interlayer on the porous substrate impregnated with m-phenylenediamine.The crown ether interlayer can reduce the diffusion of amine monomers to reaction interface influenced by its interaction with m-phenylenediamine and the spatial shielding effect,leading to a controlled interfacial polymerization(IP)reaction.Besides,crown ether with intrinsic cavity is also favorable to adjust the IP process and the microstructure of polyamide layer.Since the outer surface of the nanocavity is lipophilic,crown ether has good solvency with the organic phase,thus attracting more trimesoyl chloride molecules to the interlayer and promoting the IP reaction in the confined space.As a result,a nanoscale polyamide membrane with an ultrathin selective layer of around 50 nm is obtained.The optimal TFC polyamide membrane at crown ether concentration of 0.25 wt.%exhibits a water flux of 61.2 L·m^(−2)·h^(−1),which is 364%of the pristine TFC membrane,while maintaining a rejection of above 97%to NaCl.The development of the tailor-made nanoscale polyamide membrane via constructing multifunctional crown ether interlayer provides a straightforward route to fabricate competitive membranes for highly efficient desalination. 展开更多
关键词 polyamide membrane nanoscale structures crown ether interlayer confined polymerization reverse osmosis
原文传递
Interface engineering of NiSe_(2) nanowrinkles/Ni_(5)P_(4)nanorods for boosting urea oxidation reaction at large current densities
3
作者 Jinyang Li Xiujuan Xu +6 位作者 Xianbiao Hou Shucong Zhang Ge Su Weiqian Tian Huanlei Wang Minghua Huang arafat toghan 《Nano Research》 SCIE EI CSCD 2023年第7期8853-8862,共10页
Deliberate modulation of the electronic structure via interface engineering is one of promising perspectives to build advanced catalysts for urea oxidation reaction(UOR)at high current densities.However,it still remai... Deliberate modulation of the electronic structure via interface engineering is one of promising perspectives to build advanced catalysts for urea oxidation reaction(UOR)at high current densities.However,it still remains some challenges originating from the intrinsically sluggish UOR dynamics and the high energy barrier for urea adsorption.In response,we report the coupled NiSe_(2)nanowrinkles with Ni_(5)P_(4)nanorods heterogeneous structure onto Ni foam(denoted as NiSe_(2)@Ni_(5)P_(4)/NF)through successive phosphorization and selenization strategy,in which the produced closely contacted interface could provide high-flux electron transfer pathways.Theoretical findings decipher that the fast charge transfer takes place at the interfacial region from Ni_(5)P_(4)to NiSe_(2),which is conducive to optimizing adsorption energy of urea molecules.As expected,the well-designed NiSe_(2)@Ni_(5)P_(4)/NF only requires the low potential of 1.402 V at the current density of 500 mA·cm^(-2).More importantly,a small Tafel slope of 27.6 mV·dec^(-1),a high turnover frequency(TOF)value of 1.037 s^(-1)as well as the prolonged stability of 950 h at the current density of 100 mA·cm^(-2)are also achieved.This study enriches the understanding on the electronic structure modulation via interface engineering and offers bright prospect to design advanced UOR catalysts. 展开更多
关键词 urea oxidation reaction(UOR) interface engineering nickel phosphide nickel selenide large current densities
原文传递
Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis 被引量:1
4
作者 Xiujuan Xu Xianbiao Hou +5 位作者 Puyu Du Canhui Zhang Shucong Zhang Huanlei Wang arafat toghan Minghua Huang 《Nano Research》 SCIE EI CSCD 2022年第8期7124-7133,共10页
Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the c... Interface engineering has gradually attracted substantial research interest in constructing active bifunctional catalysts toward urea electrolysis.The fundamental understanding of the crystallinity transition of the components on both sides of the interface is extremely significant for realizing controllable construction of catalysts through interface engineering,but it still remains a challenge.Herein,the Ni/NiO heterogenous nanoparticles are successfully fabricated on the porous N-doped carbon spheres by a facile hydrothermal and subsequent pyrolysis strategy.And for the first time we show the experimental observation that the Ni/NiO interface can be fine-tuned via simply tailoring the heating rate during pyrolysis process,in which the crystalline/amorphous or crystalline/crystalline Ni/NiO heterostructure is deliberately constructed on the porous N-doped carbon spheres(named as CA-Ni/NiO@NCS or CC-Ni/NiO@NCS,respectively).By taking advantage of the unique porous architecture and the synergistic effect between crystalline Ni and amorphous NiO,the well-designed CA-Ni/NiO@NCS displays more remarkable urea oxidation reaction(UOR)and hydrogen evolution reaction(HER)activity than its crystalline/crystalline counterpart of CC-Ni/NiO@NCS.Particularly,the whole assembled two-electrode electrolytic cell using the elaborate CANi/NiO@NCS both as the anode and cathode can realize the current density of 10 mA·cm^(−2)at a super low voltage of 1.475 V(264 mV less than that of pure water electrolysis),as well as remarkable prolonged stability over 63 h.Besides,the H_(2)evolution driven by an AA battery and a commercial solar cell is also studied to enlighten practical applications for the future. 展开更多
关键词 Ni/NiO controllable interface engineering urea oxidation reaction hydrogen evolution reaction urea electrolysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部