Einstein general theory of relativity (GTR) accounted well for the precession of the perihelion of planets and binary pulsars. While the ordinary Newton law of gravitation failed, a generalized version yields similar ...Einstein general theory of relativity (GTR) accounted well for the precession of the perihelion of planets and binary pulsars. While the ordinary Newton law of gravitation failed, a generalized version yields similar results. We have shown here that these effects can be accounted for as due to the existence of gravitomagnetism only, and not necessarily due to the curvature of space time. Or alternatively, gravitomagnetism is equivalent to a curved space-time. The precession of the perihelion of planets and binary pulsars may be interpreted as due to the spin of the orbiting planet (m) about the Sun (M). The spin (S) of planets is found to be related to their orbital angular momentum (L) by a simple formula, viz., S (m/M)L.展开更多
This comment corrects the small errors in the Letter of Baysal and Yilmaz [Chin. Phys. Lett. 24 (2007) 2185], where the case of n = 1 was ignored. Meanwhile, the discussion in this comment on the case of n = -3 is n...This comment corrects the small errors in the Letter of Baysal and Yilmaz [Chin. Phys. Lett. 24 (2007) 2185], where the case of n = 1 was ignored. Meanwhile, the discussion in this comment on the case of n = -3 is novel, which shows a potential reason why today the effect of the extra dimension has not been observed.展开更多
文摘Einstein general theory of relativity (GTR) accounted well for the precession of the perihelion of planets and binary pulsars. While the ordinary Newton law of gravitation failed, a generalized version yields similar results. We have shown here that these effects can be accounted for as due to the existence of gravitomagnetism only, and not necessarily due to the curvature of space time. Or alternatively, gravitomagnetism is equivalent to a curved space-time. The precession of the perihelion of planets and binary pulsars may be interpreted as due to the spin of the orbiting planet (m) about the Sun (M). The spin (S) of planets is found to be related to their orbital angular momentum (L) by a simple formula, viz., S (m/M)L.
文摘This comment corrects the small errors in the Letter of Baysal and Yilmaz [Chin. Phys. Lett. 24 (2007) 2185], where the case of n = 1 was ignored. Meanwhile, the discussion in this comment on the case of n = -3 is novel, which shows a potential reason why today the effect of the extra dimension has not been observed.