期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Stable Fuzzy-Based Computational Model and Control for Inductions Motors
1
作者 Yongqiu Liu Shaohui Zhong +3 位作者 Nasreen Kausar Chunwei Zhang ardashir mohammadzadeh Dragan Pamucar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期793-812,共20页
In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se... In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997. 展开更多
关键词 Sliding mode control self-tuning type-2 fuzzy systems inductions motor parameters uncertainty
下载PDF
A Non-Singleton Type-3 Fuzzy Modeling: Optimized by Square-Root Cubature Kalman Filter
2
作者 Aoqi Xu Khalid A.Alattas +3 位作者 Nasreen Kausar ardashir mohammadzadeh Ebru Ozbilge Tonguc Cagin 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期17-32,共16页
In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a... In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a more robust method against uncertainties.This paper proposes a new deep learning scheme for modeling and identification applications.The suggested approach is based on non-singleton type-3 fuzzy logic systems(NT3-FLSs)that can support measurement errors and high-level uncertainties.Besides the rule optimization,the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalmanfilter(SCKF).In the learn-ing algorithm,the presented NT3-FLSs are deeply learned,and their nonlinear structure is preserved.The designed scheme is applied for modeling carbon cap-ture and sequestration problem using real-world data sets.Through various ana-lyses and comparisons,the better efficiency of the proposed fuzzy modeling scheme is verified.The main advantages of the suggested approach include better resistance against uncertainties,deep learning,and good convergence. 展开更多
关键词 MODELING computational intelligence fuzzy logic systems MODELING identification deep learning type-3 fuzzy systems optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部