期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effective thermal conductivity in granular media with devolatilization:the Lattice Boltzmann modelling
1
作者 arkadiusz grucelski 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期590-604,共15页
Flow thermomechanics in reactive porous media is of importance in industry including the thermal processing of fossil fuel(coking understood as a slow pyrolysis)involving devolatilisation.On the way to provide a detai... Flow thermomechanics in reactive porous media is of importance in industry including the thermal processing of fossil fuel(coking understood as a slow pyrolysis)involving devolatilisation.On the way to provide a detailed description of the process,a multi-scale approach was chosen to estimate effective transport coefficients.For this case the Lattice Boltzmann method(LBM)was used due to its advantages to accurately model multi-physics and chemistry in a random geometry of granular media.After account for earlier studies,the paper presents description of the model with improved boundary conditions and a benchmark case.Results from meso-scale LBM calculations are presented and discussed regarding the spatial resolution and the choice of relaxation parameter along its influence on the accuracy compared with empirical formulae.Regarding the estimation of effective thermal conductivity coefficient it is shown that occurrence of devolatilization has a crucial effect by reducing heat transfer.Some quantitative results characterise the propagation of thermal front;also presented is the evolution of effective thermal conductivity.The work is a step forward towards a physically sound simulation of thermal processing of fossil fuel. 展开更多
关键词 COKING Effective heat transfer coefficient Granular media Meso-scale modelling Lattice Boltzmann Method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部