期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Antimicrobial silver nanoparticle induces organ deformities in the developing Zebrafish (Danio rerio) embryos 被引量:2
1
作者 Rajaretinam Rajesh Kannan arockya jeyabalan avila jerley +1 位作者 Muthiah Ranjani Vincent Samuel Gnana Prakash 《Journal of Biomedical Science and Engineering》 2011年第4期248-254,共7页
Silver Nanoparticles were synthesized by Esche- richia coli using Silver nitrate in the growth me-dium and characterized in X-Ray Diffraction, UV-Vis Spectrophotometer and Scanning Electron Microscope. They exhibited ... Silver Nanoparticles were synthesized by Esche- richia coli using Silver nitrate in the growth me-dium and characterized in X-Ray Diffraction, UV-Vis Spectrophotometer and Scanning Electron Microscope. They exhibited antimicrobial activity against human pathogens except Escherichia Coli. Nanoparticles were impregnated in yarn and ana-lyzed for their inhibition in the broth culture. The Minimal Inhibitory Concentratio was calculated for the human pathogens in Microtitre plate. The toxicity assessment of the nanoparticles in the embry-onic Zebrafish showed many organogensis deformi-ties like cardiac malformations, eye and head edema, tail and trunk flexure were observed in the organ system of the developing embryos for 1 to 5 day post fertilization in different concentrations of Ag Nanoparticles. The Organogenesis disruptive effects were found in 14 - 20 ng/ml of silver nanoparticles but the inhibition was found in 4-10ng/ml for the pathogens in vitro and 10ng/ml in embryos. Nevertheless, in Cardiac assay, the Heart Beat rates were calculated as 42 - 45 for 15 Sec in the concentrations ranging from 10 - 20 ng/ml of Silver nanoparticles. The blood flows, rhythmicity, contractility of heart beat rates were observed normal. The Mean value of blood Cell counting did not showed any notable effects in the Nanoparticle treated Zebrafish embryos and control. The LC50 value for the Biosynthesized nanoparticle was at 22 ng/ml in all the developmental stages of the em-bryos. Our results shows silver nanoparticles dis-rupts the normal organogenesis during development and further detailed studies are needed to prove silver nanopartcles are an antimicrobial agent for use in humans. 展开更多
关键词 Biocidal Effect X-ray Diffraction Scanning Electron MICROSCOPE ORGANOGENESIS DEFORMITIES Cardiac Assay
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部