期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
LJItrasensitive H2S gas sensors based on p-type WS2 hybrid materials 被引量:3
1
作者 Georgies Alene Asrest Jose J. Baldovi +11 位作者 aron dombovari Topias Jarvinen Gabriela Simone Lorite Melinda Mohl Andrey Shchukarev Alejandro Perez Paz Lede Xian Jyri-Pekka Mikkola Anita Lloyd Spetz Heli Jantunen Angel Rubio Krisztian Kordas 《Nano Research》 SCIE EI CAS CSCD 2018年第8期4215-4224,共10页
Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor app... Owing to their higher intrinsic electrical conductivity and chemical stability with respect to their oxide counterparts, nanostructured metal sulfides are expected to revive materials for resistive chemical sensor applications. Herein, we explore the gas sensing behavior of WS2 nanowire-nanoflake hybrid materials and demonstrate their excellent sensitivity (0.043 ppm-1) as well as high selectivity towards H2S relative to CO, NH~, H2, and NO (with corresponding sensitivities of 0.002, 0.0074, 0.0002, and 0.0046 pprn-1, respectively). Gas response measurements, complemented with the results of X-ray photoelectron spectroscopy analysis and first-principles calculations based on density functional theory, suggest that the intrinsic electronic properties of pristine WS2 alone are not sufficient to explain the observed high sensitivity towards H2S. A major role in this behavior is also played by O doping in the S sites of the WS2 lattice. The results of the present study open up new avenues for the use of transition metal disulfide nanomaterials as effective alternatives to metal oxides in future applications for industrial process control, security, and health and environmental safety. 展开更多
关键词 ws nanowire nanoflake gas sensor H2S O doping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部