期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Recent progress of grain boundary diffusion process for hot-deformed Nd-Fe-B magnets 被引量:1
1
作者 Min Zhao Na Liu +8 位作者 Xu Tang Renjie Chen Jinyun Ju Wenzong Yin Yeyuan Du aru yan Xincai Liu Jing Pan Zhiyi Xu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第4期477-488,共12页
Grain boundary diffusion process(GBDP)was first proposed for sintered Nd-Fe-B magnets to achieve the high utilization efficiency of heavy rare earth elements.Recent success of fabricating high performance nanocomposit... Grain boundary diffusion process(GBDP)was first proposed for sintered Nd-Fe-B magnets to achieve the high utilization efficiency of heavy rare earth elements.Recent success of fabricating high performance nanocomposite magnets by GBDP indicates that this method also exerts huge applicable potential on hot-deformed Nd-Fe-B magnets.In this review,the development and magnetic property enhancement mechanisms of different diffusion methods proposed on hot-deformed magnets were thoroughly elucidated.Moreover,the improve room for further property enhancement and the accompanying problems of GBDP on hot-deformed magnets are also discussed in this article. 展开更多
关键词 Hot-deformed Nd-Fe-B magnets Grain boundary diffusion process Magnetic properties Micromagnetic simulations Rare earths
原文传递
Effect of yttrium substitution on magnetic properties and service performances of Nd-Fe-B sintered magnets
2
作者 Xiaodong Fan Shuai Guo +5 位作者 Guangfei Ding Sining Fan Zhehuan Jin Renjie Chen Shukai Zhang aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第1期116-121,共6页
We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd_(1-x)Y_(x))_(13.80)Fe_(ba1)Al_(0.24)Cu_(0.1)B_(6.04)(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magn... We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd_(1-x)Y_(x))_(13.80)Fe_(ba1)Al_(0.24)Cu_(0.1)B_(6.04)(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magnetic properties as well as service performances of the magnets were also systematically investigated.The phase constituents of the magnets have no obvious variation within the whole range of Y content,while the main phase grains form in-situ core-shell structure where Y gathers in the core and Nd mainly distributes in the shell.Compared with pure Nd-Fe-B magnets,the magnetic performances of Y substituted magnets slightly decrease on account of the poor intrinsic magnetic properties of Y_(2)Fe_(14)B.Fortunately,the μ_(O)M_(r),μ_(O)H_(cj) and(BH)_(max) of the 20 at% Y magnet still remain at a high level of 1.325 kG,1.173 kOe and 342.884 kj/m^(3),which approaches the performances of commercial N45-grade magnet.The service performances of Y substituted magnets indicate that though the surface corrosion products and Vickers hardness of the NdY-Fe-B magnets increase to a certain extent compared to Nd-Fe-B,the magnets with Y substitution still display relatively good service performances.Therefore,on the basis of sacrificing little partial magnetic and service performances,Y substituted Nd can still prepare NdY-Fe-B medium-grade magnets.By this way,we achieve the balanced utilization of rare earth resources,which has significant meanings for the industry and scientific research. 展开更多
关键词 Y substitution Magnetic properties Service performances Nd-Fe-B sintered Magnets Rare earths
原文传递
Enhancement mechanism of maximum energy product in hot-deformed Nd-Fe-B magnets by addition of ferromagnetic substances
3
作者 Lian Wu Xianshuang Xia +7 位作者 Wenzong Yin Xu Tang Jinyun Ju Yeyuan Du Renjie Chen Zhiyi Xu Shenglei Che aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第12期1984-1989,I0006,共7页
It has been proved that the maximum magnetic energy product(BH)maxof hot-deformed Nd-Fe-B magnets can be effectively improved by adding substances with either high melting point or high saturation magnetization.In thi... It has been proved that the maximum magnetic energy product(BH)maxof hot-deformed Nd-Fe-B magnets can be effectively improved by adding substances with either high melting point or high saturation magnetization.In this work,we selected a ferromagnetic nano Fe_(55)Ni_(28)Co_(17) alloy powders with both high melting point and high saturation magnetization as the dopant to improve the(BH)max.By the addition of 1 wt% FeNiCo,the remanence increases by over 5%(from 1.36 to 1.44 T),resulting in a significant enhancement of(BH)maxfrom 355 to 396 kJ/m^(3)(from 44.6 to 49.7 MGOe).Microstructure observations reveal that the texture of grain alignment is improved,the concentrations of ferro magnetic elements(Fe,Ni,and Co) in the main phase and intergranular phase are increased so that the magnetization behavior of hot-deformed magnet changes(more easily shows reversible magnetization behaviors),which are the reasons why the high maximum energy product of hot-deformed magnet,is obtained. 展开更多
关键词 ND-FE-B Ferromagnetic substance FeNiCo alloys Magnetic properties RAREEARTHS
原文传递
Improved corrosion resistance and thermal stability of sintered Nd-Fe-B magnets with holmium substitution 被引量:12
4
作者 Jinghui Di Shuai Guo +6 位作者 Ling Chen Pengpeng Yi Guangfei Ding Kan Chen Ming Li Don Lee aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第8期826-831,共6页
The effects of Ho substitution for Nd on the microstructure, corrosion resistance and thermal stability of the Nd-Fe-B magnets were investigated. The(Nd,Ho)-O phase was formed with increasing Ho substitution. The re... The effects of Ho substitution for Nd on the microstructure, corrosion resistance and thermal stability of the Nd-Fe-B magnets were investigated. The(Nd,Ho)-O phase was formed with increasing Ho substitution. The results of potentiodynamic polarization and highly accelerated stress test show improved corrosion resistance with increasing Ho substitution. The optimum mass loss 0.29 mg/cm^2 is achieved.Moreover, the average temperature coefficients for remanence and coercivity in the range of 25-150℃are both closer to zero, indicating improved thermal stability. The mechanisms for the improved corrosion resistance and thermal stability are discussed in relation to the microstructure featuring the(Nd,Ho)-O phase. 展开更多
关键词 Corrosion resistance Ho substitution ND-FE-B Thermal stability Rare earths
原文传递
Zirconium content induced mitigation of mechanical anisotropy in 2:17 type SmCo magnets 被引量:5
5
作者 Guanghui yan Zhuang Liu +4 位作者 yanping Feng Weixing Xia Chaoyue Zhang Guangqing Wang aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第2期182-187,共6页
The mitigation of mechanical anisotropy is observed in 2:17 type SmCo magnets by adjusting the Zr content This behavior is supposed to be closely related to the density of lamellar phase,the density of which is enhanc... The mitigation of mechanical anisotropy is observed in 2:17 type SmCo magnets by adjusting the Zr content This behavior is supposed to be closely related to the density of lamellar phase,the density of which is enhanced obviously with increasing Zr content.The other reasons which could cause the reduction of the mechanical anisotropy is discussed from the Zr-rich impurity phase to the atom substitutions and crystal lattice distortion.The observation of crack in nano scale that dearly forms angles of 60° and 90° with respect to the lamellar phase,indicates that the probable cleavage planes are crystal faces(1011) and(1010).The results of investigation can deepen the understanding of mechanical anisotropy and cleavage fracture in the SmCo magnets. 展开更多
关键词 2:17 TYPE SMCO MAGNET Mechanical anisotropy CLEAVAGE plane LAMELLAR phase Rare earths
原文传递
Effects of Nd-Ga intergranular addition on microstructure and magnetic properties of heavy-rare-earth-free Nd-Fe-B sintered magnets 被引量:2
6
作者 Jinhao Zhu Guangfei Ding +5 位作者 Lei Jin Zhehuan Jin Bo Zheng Shuai Guo Renjie Chen aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第6期924-929,I0003,共7页
In this study,we propose an approach of grain boundary modification that can significantly increase the coercivity of the B-lean Nd-Fe-B sintered magnets by intergranular addition of Nd-Ga.The coercivity is substantia... In this study,we propose an approach of grain boundary modification that can significantly increase the coercivity of the B-lean Nd-Fe-B sintered magnets by intergranular addition of Nd-Ga.The coercivity is substantially enhanced from 1.51 to 2.04 T through optimizing the microstructure and adjusting the phase composition for the grain boundary phase in the annealed magnets.The matrix grains are covered by a continuous thin grain boundary phase accompanying the formation of intermetallic Nd_(6)Fe_(13)Ga phases.The analysis of magnetic behaviors above Curie temperature confirms that the grain boundary phase of annealed Nd-Ga doped magnets appears to be non-ferromagnetic,facilitating the intergrain exchange decoupling.Microstructure observation in grain boundary area indicates that some surface of the matrix grain is dissolved in the formation process of the Nd_(6)Fe_(13)Ga phase.It gives rise to a decrease in the proportion of matrix grains and saturation magnetization of the magnet.The detailed relationship between magnetic properties and microstructure is discussed based on these results. 展开更多
关键词 Nd-Fe-B sintered Magnet Magnetic properties Grain boundary Microstructures Rare earths
原文传递
A comparative study of NdY-Fe-B magnet and NdCe-Fe-B magnet 被引量:1
7
作者 Xiaodong Fan Shuai Guo +5 位作者 Guangfei Ding Sining Fan Zhehuan Jin Renjie Chen Shukai Zhang aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第9期1480-1487,I0006,共9页
Low cost and high abundance rare earth elements Y and Ce have attracted tremendous interests of the industrial and scientific societies for fabricating the highly cost-performance efficient rare earth permanent magnet... Low cost and high abundance rare earth elements Y and Ce have attracted tremendous interests of the industrial and scientific societies for fabricating the highly cost-performance efficient rare earth permanent magnets.However,the effect of separate replacement of Nd by Y or Ce on the performances of NdFeB-type magnet under the same atomic ratio and preparation conditions is still unclear.In this work,we systematically investigated the magnetic properties,thermal stabilities and service performances of(Nd_(0.8)Y_(0.2))_(13.80)Fe_(bal)Al_(0.24)Cu_(0.1)B_(6.04)(atomic fraction,denoted as 20 Y)and(Nd_(0.8)Ce_(0.2))_(13.80)Fe_(bal)Al_(0.24)Cu_(0.1)B_(6.04)(atomic fraction,denoted as 20 Ce)magnets.The results demonstrate that theμ_(0)M_(r),μ_(0)H_(c)and(BH)_(max)of 20 Y magnet are respectively 1.325 T,1.173 T and 343.467 kJ/m^(3),which are comprehensively higher than those of 20 Ce magnet(μ_(0)M_(r)=1.310 T,μ_(0)H_(c)=0.948 T,(BH)_(max)=321.105 kJ/m^(3)).Moreover,the 20 Y magnet has higher thermal stability compared with 20 Ce magnet which is favorable for the magnetic performances at elevated temperatures.The investigation of micro structure and elemental distribution indicates that the excellent magnetic performance s of NdY-Fe-B magnet can be attributed not only to the preferable intrinsic properties4πM_(s),H_(s)and T_(c)of Y_(2)Fe_(14)B,but also to the in-situ co re-shell structure of the 2:14:1 matrix phase grain with Yrich core and Nd-rich shell,along with the thicker grain boundary layer between the adjacent matrix phase grains in NdY-Fe-B magnet.Furthermore,the 20 Y magnet exhibits better mechanical property and higher corrosion resistance than 20 Ce magnet,which are helpful for prolonging the service life of the magnet in practical application. 展开更多
关键词 NdY-Fe-B NdCe-Fe-B Magnetic properties Thermal stabilities Service performances Rare earths
原文传递
Twinning,phase boundary structure and development of high coercivity in Fe-rich Sm_(2)Co_(17)-type magnets 被引量:1
8
作者 Haichen Wu Zhuang Liu +7 位作者 Chaoyue Zhang Qiqi yang Huanming Lu Guoxin Chen Xinming Wang Yong Li Renjie Chen aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第1期102-111,共10页
The microstructure of twinning as well as the phase boundary between 1:5 H and 2:17 R phase in Fe-rich Sm_(2)Co_(17)-type magnets was characterized at atomic scale using nanobeam diffraction and highresolution STEM-HA... The microstructure of twinning as well as the phase boundary between 1:5 H and 2:17 R phase in Fe-rich Sm_(2)Co_(17)-type magnets was characterized at atomic scale using nanobeam diffraction and highresolution STEM-HAADF imaging,and the reason for the dramatic increase of coercivity during slow cooling was investigated based on the microchemistry analysis.The twinning relationship in the 2:17 R phase originates from ordered substitution of Sm atoms by Co-Co atomic pairs on every three(3033)and(3033)planes,leading to formation of two corresponding equivalent twin variants.The basal plane of the 2:17 R phase,the 1:3 R platelet phase across the 2:17 R cell and the 1:5 H cell boundary phase between two adjacent 2:17 R cells all can act as effective twin boundary.The cell boundary phase is precipitated along the pyramidal habit plane,and a fully coherent phase boundary(PB)is formed between the 1:5 H and 2:17 R phases with the orientation relationship to be PB//(1121)1:5 H//(1011)_(2):17 R.The phase boundary may either be parallel to or intersect with the pyramidal planes occupied by Co-Co atomic pairs.The substantial increase of coercivity during slow cooling is ascribed to the development of large gradient of the elements concentration within the cell boundary phase,resulting in large gradient of domain wall energy,and thus the pinning strength of the cell boundary phase against magnetic domain wall motion is significantly enhanced. 展开更多
关键词 Sm_(2)Co_(17)-type magnets Microstructure TWINNING Phase boundary COERCIVITY Rare earths
原文传递
Effect of Nb doping on microstructure and magnetic properties of hot-deformed Nd-Fe-B magnets with Nd-Cu eutectic diffusion 被引量:1
9
作者 Tingting Song Xin Li +7 位作者 Xu Tang Wenzong Yin yang Luo Dunbo Yu Wenlong yan Jinyun Ju Renjie Chen aru yan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期121-127,共7页
To restrict grain growth in coarse grain regions caused by the diffusion of Nd-Cu eutectic alloys,the Nb element was introduced into the precursor alloy to regulate the microstructure of melt-spun powder and die-upset... To restrict grain growth in coarse grain regions caused by the diffusion of Nd-Cu eutectic alloys,the Nb element was introduced into the precursor alloy to regulate the microstructure of melt-spun powder and die-upset magnets.The magnetic properties and thermal stability of die-upset magnets were appreciably improved through the addition of Nb.For the Nb-doped diffusion die-upset magnet,the grains inside the ribbons were refined and the coarse non-oriented surface crystallite got suppressed on the interface of ribbons during the hot-deformation process to form the anisotropic magnet.Moreover,Nd gathers at the intergranular phases,which is considered to enforce domain wall pinning force.The Nb-modified microstructure is advantageous to thermal stability and coercivity enhancement.High-resolution transmission electron microscopy images revealed that the Nb element gathered on the grain boundary and triple grain boundary to form c-Nb and h-Nb Fe B to hinder the grain growth during the hot-deformation process,which led to direct enhancement in the coercivity.Furthermore,the c-Nb and h-Nb Fe B are nonmagnetic phases that strengthened the magnetic isolation.However,the h-Nb Fe B precipitated from the hard magnetic phase and formed crystal defects which led to remanence deterioration. 展开更多
关键词 ND-FE-B Hot deformation DIFFUSION Nb-doping COERCIVITY
原文传递
Influence of Pr-Al-Co alloy diffusion source on magnetic properties and microstructure of sintered Nd-Fe-B magnets processed by grain boundary diffusion 被引量:1
10
作者 Lei Jin Jinhao Zhu +6 位作者 Guangfei Ding Zhehuan Jin Bo Zheng Xuejing Cao Shuai Guo Renjie Chen aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第12期1885-1893,I0003,共10页
In this study,the influence of the content of Al and Co in the diffusion source on the magnetic performance and microstructure of the diffused magnet was studied by grain boundary diffusion treatment with Pr_(70)Al_(3... In this study,the influence of the content of Al and Co in the diffusion source on the magnetic performance and microstructure of the diffused magnet was studied by grain boundary diffusion treatment with Pr_(70)Al_(30-x)Co_(x)(x=0 at%,10 at%,15 at%,20 at%,30 at%)alloys.When the Co content in the diffusion source increases from 0 at%to 10 at%,the coercivity enhancement in the Pr_(70)Al_(20)Co_(10)diffused magnet is the highest,increased from 1.62 to 2.24 T,higher than 2.01 T of the Pr_(70)Al_(30)diffused magnet.With further increase of Co content in the diffused source,the coercivity of the diffused magnet decreases gradually,the coercivity of Pr_(70)Al_(15)Co_(15),Pr_(70)Al_(20)Co_(10)and Pr_(70)Co_(30)diffused magnet is 2.15,1.99 and1.81 T,respectively.Microstructural analysis shows that plenty of continuous grain boundary phases(CGBPs)can be formed in the Pr_(70)Al_(20)Co_(10)diffused magnet under the synergistic effect of Al and Co,which leads to the enhancement of magnetic isolation between more adjacent grains.However,the amount of CGBP in the diffused magnets gradually decreases with the further increase of Co content in the diffusion source. 展开更多
关键词 ND-FE-B COERCIVITY Pr-AI-Co alloys Grain boundary diffusion Rare earths
原文传递
Effect of Pr-Ga dual-alloys diffusion on magnetic properties and thermal stability of hot-deformed PrNd-Fe-B magnets 被引量:1
11
作者 Longquan Hou Jinyun Ju +6 位作者 Wenzong Yin Xu Tang Renjie Chen Ailin Xia Yeyuan Du Ruihua Du aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第3期457-461,I0004,共6页
To investigate the influence of the addition of Pr-Ga alloys on magnetic properties and morphology of materials,the hot-deformed PrNd-Fe-B magnets were prepared by the addition of Pr-Ga alloys using a dual-alloys diff... To investigate the influence of the addition of Pr-Ga alloys on magnetic properties and morphology of materials,the hot-deformed PrNd-Fe-B magnets were prepared by the addition of Pr-Ga alloys using a dual-alloys diffusion.The room-temperature coercivity of the hot-deformed PrNd-Fe-B magnets increases substantially from 1.68 to 2.34 T,while the remanence decreases from 1.42 to 1.24 T,by the addition of 5 wt%Pr-Ga alloys.Moreover,the thermal stability of coercivity improves from-0.46%/℃to-0.42%/℃.Two types of grain boundary phases(PrNd-rich and PrNd-Ga-rich)are generated at grain boundaries by microstructural analysis,resulting in the decrease of Fe element concentration from more than 60%to about 10%at grain boundaries.The decrease of ferromagnetic element concentration at grain boundaries and the refinement of grain are considered to be the main reasons for the improvement of coercivity and thermal stability. 展开更多
关键词 Hot-deformed PrNd-Fe-B Dual-alloys diffusion Magnetic properties Rare earths
原文传递
Microstructural design in LaCe misch-metal substituted 2:14:1-type sintered magnets by dual-alloy method 被引量:1
12
作者 Kan Chen Shuai Guo +6 位作者 Hongliang Zhao Xiaodong Fan Fengchun Fan Guangfei Ding Renjie Chen Xiwen Zheng aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第3期305-311,I0003,共8页
LaCe-based sintered magnets with different microstructural features and distinct rare earth elemental distribution were designed by dual-alloy method.The sample prepared by fine LaCe-containing powder and coarse LaCe-... LaCe-based sintered magnets with different microstructural features and distinct rare earth elemental distribution were designed by dual-alloy method.The sample prepared by fine LaCe-containing powder and coarse LaCe-free powder possesses higher remanence(~13.41 kGs),whereas another sample prepared by fine LaCe-free powder and coarse LaCe-containing powder possesses higher coercivity(~5.67 kOe).Additionally,these samples are with the same nominal compositions and their elemental distribution features are obviously different in matrix grains respectively.Their remanence difference is mainly affected by the saturation magnetization difference caused by the distribution variation of the rare earth elements at the matrix phase.The coercivity difference is affected by the component of the grain boundary phase between the adjacent grains and the distribution variation of the rare earth elements at the matrix phase.These findings may provide a new prospect for the utilization of LaCe mischmetal in 2:14:1-type permanent magnets. 展开更多
关键词 Misch-metal Microstructural design Sintered magnet Rare earths
原文传递
Rotating magnetocaloric effect and thermal transport properties in sintered Nd0.8Pr0.2Co5 alloy 被引量:1
13
作者 Mingxiao Zhang Kun Wang +2 位作者 Jian Liu Lei Liu aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第6期606-611,共6页
We report microstructure,magnetocaloric effect and thermal transfer properties of highly orientated Nd0.8Pr0.2Co5 alloy prepared by powder metallurgical processing.Two spin-reorientation transitions of easy magnetizat... We report microstructure,magnetocaloric effect and thermal transfer properties of highly orientated Nd0.8Pr0.2Co5 alloy prepared by powder metallurgical processing.Two spin-reorientation transitions of easy magnetization direction,easy plane to easy cone at TSR1=206 K,easy cone to easy axis at TSR2=242 K,are observed.The present textured alloy exhibits a rotating entropy change of 2.6 J/(kg·K)and refrigerant capacity of 155 J/kg under a magnetic field of 2 T,and high thermal conductivity of 11 W/(m·K).The sintered Nd0.8Pr0.2Co5 alloy with good combination of excellent magnetocaloric and thermal transfer properties are promising for scientific research and practical applications as room-temperature rotating magnetic refrigeration materials. 展开更多
关键词 Rotating magnetocaloric effect Rare-earth alloys ANISOTROPY SPIN-REORIENTATION
原文传递
Effect of surface Nd-rich phase and oxygen content of melt-spun flakes on formation of coarse grains in hot-pressed Nd-Fe-B magnet
14
作者 Yeyuan Du Wenzong Yin +6 位作者 Renjie Chen Xu Tang Jinyun Ju Bin Chen Longquan Hou aru yan Jianhui Yuan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第11期1389-1395,I0003,共8页
Nd-Fe-B hot-pressed(HP) magnet prepared from melt-spun MQU-F flakes features coarse grains(CG)with the average size of both 200 nm(CGS) and 700 nm(CGL) at flake boundary.The grain growth at the flake boundary of Nd2 F... Nd-Fe-B hot-pressed(HP) magnet prepared from melt-spun MQU-F flakes features coarse grains(CG)with the average size of both 200 nm(CGS) and 700 nm(CGL) at flake boundary.The grain growth at the flake boundary of Nd2 Fe14B/α-Fe composite HP magnet before and after diffusion of low-melting-point Pr82Cu18 phase was investigated,revealing the indispensable role of surface RE-rich phase of meltspun flakes in the formation of CG in HP magnet.The dominant role of surface oxygen content of melt-spun flakes in the formation of CGL has been clarified with etching method.The HP magnet prepared from the etched flakes with dramatically decreased oxygen content exhibits the CG regions merely with homoge neous equiaxed CGS at flake boundary.Consequently,the coercivity(μ0 Hc) shows significant increase while remanent magnetization(μ0 Mr) inappreciable change.Further investigation with sieving method reveals the elimination of CGL via removal of the fine Nd-Fe-B flakes smaller than 54 μm due to their much higher oxygen content,confirming the dominant role of oxygen content in the formation of CGL.The quantitative analysis on the magnetic properties of the above HP magnets reveals the monotonic increase of coercivity(μ0 Hc) and negligible change of remanent magnetization(μ0 Mr) with decreased oxygen contents of Nd-Fe-B flakes.The maximum value of coercivity(μ0 Hc) increases from2.26 to 2.47 T as the oxygen content decreases from 0.1692 wt% to 0.079 wt%. 展开更多
关键词 Coarse grain Hot pressing ND-FE-B Oxygen content Nd-rich phase Rare earths
原文传递
Effects of Pr-Cu-Ti intergranular addition on microstructure and magnetic properties of heavy-rare-earth-free Nd-Fe-B sintered magnets
15
作者 Jinhao Zhu Guangfei Ding +6 位作者 Bo Zheng Haichen Wu Lei Jin Zhehuan Jin Shuai Guo Renjie Chen aru yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第5期778-783,I0004,共7页
By intergranular addition of Pr-Cu-Ti alloy powders in the Nd-Fe-B sintered magnets with the normal B component,we propose an approach to the optimization of grain boundary and local Nd-Fe-B composition system.The coe... By intergranular addition of Pr-Cu-Ti alloy powders in the Nd-Fe-B sintered magnets with the normal B component,we propose an approach to the optimization of grain boundary and local Nd-Fe-B composition system.The coercivity is enhanced from 1.42 to 1.86 T,while further addition leads to a reduction in remanence and coercivity.The analyses of phase composition reveal that Ti mainly exists in the form of metallic Ti alloy,and part of Ti combines with B to form the TiB2 phase after the liquid phase sintering process.This process results in a consumption of B in the local Nd-Fe-B composition system and a change of the grain boundary component,which contributes to the formation process of the RE_(6)(Fe,M)_(14) phase after the annealing process.Therefore,with the modification of grain boundary and composition system,the intergranular addition of Pr-Cu-Ti induces the generation of continuous thin grain boundary phases.It promotes the intergrain exchange decoupling,increasing the coercivity in the annealed magnet.While the excess addition results in the segregation of TiB_(2),as well as the precipitation of TiB_(2) into the Nd-Fe-B phase,which leads to structural defects.Thus,the further effort for the addition alloy with Ti to reduce the deterioration of the microstructure will lead to further improvement in magnetic properties. 展开更多
关键词 Nd-Fe-B sintered magnet Magnetic properties Grain boundary Microstructures Rare earths
原文传递
Coercivity enhancement of Ce-containing hot-deformed magnets by grain boundary diffusion of DyF_(3)
16
作者 Bin Chen Jinyun Ju +5 位作者 Wenzong Yin Xu Tang Renjie Chen aru yan Longquan Hou Yeyuan Du 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第2期289-295,I0004,共8页
The samples with full density were prepared by hot pressing the the melt-spun powders mixed with DyF_(3)powders of different mass fractions followed by hot-deformation process.The magnetic properties and temperature d... The samples with full density were prepared by hot pressing the the melt-spun powders mixed with DyF_(3)powders of different mass fractions followed by hot-deformation process.The magnetic properties and temperature dependence of coercivity were obtained by BH tracer and VSM,respectively.The microstructure were analyzed by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The coercivity of Ce-containing hot-deformed magnets is increased from 1.41 to 1.95 T by grain boundary diffusion of 3 wt%DyF_(3),and is further enhanced to 2.05 T after annealing treatment.The thermal stability of coercivity and remanence is improved.The annealing condition in this work crucially plays a role in thickening the grain boundary phase.Microstructure analysis reveals that the continuous and thick grain boundary phase formed after DyF_(3)diffusion can weaken the magnetic coupling between grains,and suppress the platelet shaped grain size and the aspect ratio.The Dycontaining shell structure formed by the partial diffusion of Dy into the main phase can increase the magnetic anisotropy field,which is the main reason for the coercivity improvement.After optimizing the structure by DyF_(3)diffusion,the"dendritic-like"reverse domain is transformed into the"dot scatteredlike"reverse domain. 展开更多
关键词 Ce-containing hot-deformed magnet COERCIVITY Grain boundary phase Dy-containing shell structure Rare earths
原文传递
Sandwiched structure of hot-deformed Nd-Fe-B permanent magnets processed by Nd-Cu eutectic alloys diffusion
17
作者 Longquan Hou Jinyun Ju +5 位作者 Xu Tang Renjie Chen Wenzong Yin aru yan Bin Chen Yeyuan Du 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第8期993-997,共5页
A series of sandwiched structures with different near-surface mass fractions x(x=3 wt%,4 wt%,5 wt%)was employed to develop high-coercivity hot-deformed Nd-Fe-B magnets by the addition of 2 wt%Nd-Cu eutectic alloys via... A series of sandwiched structures with different near-surface mass fractions x(x=3 wt%,4 wt%,5 wt%)was employed to develop high-coercivity hot-deformed Nd-Fe-B magnets by the addition of 2 wt%Nd-Cu eutectic alloys via adjusting the middle thickness and near-surface thickness.The designed magnet with a pronounced composite structure shows a 23% increase in coercivity with a 6% loss of remanence by adjusting the sandwiched structure at 4 wt% Nd-Cu eutectic alloys in the near-surface regions.The results indicate that the near-surface Nd-Cu-rich "shell" structure can effectively suppress the magnetization reversal of overall magnets,enhancing the coercivity.With the help of loading stress,Nd-Cu liquid enriched at the near-surface regions of the sample is infiltrated into the Nd-Cu-lean middle region,resulting in a concentration gradient.Microstructure characterizations further demonstrate that the infiltrated Nd-Cu eutectic plays a critical role in inhibiting grain growth and intergranular magnetic interaction.The optimized microstructure features suppress the reversed magnetization process,which makes a positive contribution to coercivity. 展开更多
关键词 ND-FE-B Hot-deformed magnet Sandwiched structure Rare earths
原文传递
Air stable Fe nanostructures with high magnetization prepared by reductive annealing
18
作者 yanhua Liu Baoru Bian +7 位作者 Chunfeng Hu Pengpeng Yi Juan Du Weixing Xia Jian Zhang aru yan Ying Li J.Ping Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1334-1338,共5页
Monodispersed Fe nanospindles and nanoparticles were successfully synthesized through environmentfriendly reductive annealing ?-Fe OOH nanorods. Effects of annealing temperature and reaction atmosphere on microstruct... Monodispersed Fe nanospindles and nanoparticles were successfully synthesized through environmentfriendly reductive annealing ?-Fe OOH nanorods. Effects of annealing temperature and reaction atmosphere on microstructure, phase, and magnetic property of Fe nanostructures were investigated.The as-obtained pure Fe nanoparticles with mean size of 45 nm had a high saturation magnetization up to 207 emu/g, close to that of bulk material(218 emu/g), which exhibited high air stability. After exposing in air for 2 and 7 days, the as synthesized Fe nanoparticles still showed high magnetization of 182 and141 emu/g, respectively. 展开更多
关键词 Fe nanostructures Microstructure High saturation magnetization High air stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部