A simplified energy-water prototype model has been developed at the National Energy Technology Laboratory (NETL) as a part of a larger effort to comprehensively model energy-water interactions. The NETL Water-Energy M...A simplified energy-water prototype model has been developed at the National Energy Technology Laboratory (NETL) as a part of a larger effort to comprehensively model energy-water interactions. The NETL Water-Energy Model (NWEM) prototype passively couples a variety of data on water supply, water availability, and power plant water use with the National Energy Modeling System (NEMS) power generation forecasts. NWEM operates at a watershed level and its efficacy in resolving local water supply and water-use trade-offs was demonstrated using data from Sandia National Laboratory along with a water supply scenario projected by the World Resources Institute (WRI). The prototype model only passively utilized a forecast of power generation from an existing forecast;the model’s choices were limited to purchases or retrofitting to meet future water supply constraints. NETL is continuing to integrate the water sub-module into the NEMS framework, which will allow active interaction between the water market and power markets, extending the industry’s ability to re-dispatch its generating units with the price of water as one of the variable costs.展开更多
文摘A simplified energy-water prototype model has been developed at the National Energy Technology Laboratory (NETL) as a part of a larger effort to comprehensively model energy-water interactions. The NETL Water-Energy Model (NWEM) prototype passively couples a variety of data on water supply, water availability, and power plant water use with the National Energy Modeling System (NEMS) power generation forecasts. NWEM operates at a watershed level and its efficacy in resolving local water supply and water-use trade-offs was demonstrated using data from Sandia National Laboratory along with a water supply scenario projected by the World Resources Institute (WRI). The prototype model only passively utilized a forecast of power generation from an existing forecast;the model’s choices were limited to purchases or retrofitting to meet future water supply constraints. NETL is continuing to integrate the water sub-module into the NEMS framework, which will allow active interaction between the water market and power markets, extending the industry’s ability to re-dispatch its generating units with the price of water as one of the variable costs.