The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was address...The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was addressed by sonication and non-covalent surface functionalization of graphite nanoplatelets(GNPs) using two types of surfactant: anionic(sodium dodecyl benzene sulfate(SDBS)) and non-ionic polymeric(ethyl cellulose(EC)). After colloidal mixing with Al powder, consolidation was performed at two sintering temperatures(550 and 620°C). The structure, density, mechanical and wear properties of the nanocomposite samples were investigated and compared with a pure Al and a pure GNPs/Al nanocomposite sample. Noticeably, EC-based 0.5 wt% GNPs/Al samples showed the highest increment of 31% increase in hardness with reduced wear rate of 98.25% at 620°C, while a 22% increase in hardness with reduced wear rate of 96.98% at 550°C was observed, as compared to pure Al. Microstructural analysis and the overall results validate the use of EC-based GNPs/Al nanocomposites as they performed better than pure Al and pure GNPs/Al nanocomposite at both sintering temperatures.展开更多
文摘The exceptional properties of graphene make it ideal as a reinforcement to enhance the properties of aluminum matrices and this critically depends on uniform dispersion. In this study, the dispersion issue was addressed by sonication and non-covalent surface functionalization of graphite nanoplatelets(GNPs) using two types of surfactant: anionic(sodium dodecyl benzene sulfate(SDBS)) and non-ionic polymeric(ethyl cellulose(EC)). After colloidal mixing with Al powder, consolidation was performed at two sintering temperatures(550 and 620°C). The structure, density, mechanical and wear properties of the nanocomposite samples were investigated and compared with a pure Al and a pure GNPs/Al nanocomposite sample. Noticeably, EC-based 0.5 wt% GNPs/Al samples showed the highest increment of 31% increase in hardness with reduced wear rate of 98.25% at 620°C, while a 22% increase in hardness with reduced wear rate of 96.98% at 550°C was observed, as compared to pure Al. Microstructural analysis and the overall results validate the use of EC-based GNPs/Al nanocomposites as they performed better than pure Al and pure GNPs/Al nanocomposite at both sintering temperatures.