期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Unregulated emissions from a diesel engine equipped with vanadium-based urea-SCR catalyst 被引量:3
1
作者 Lei Jiang Yunshan Ge +2 位作者 asad naeem shah Chao He Zhihua Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期575-581,共7页
The present work is aimed at the study of number-size distribution of particles, volatile organic compounds (VOCs), and carbonyl compounds (CC) or carbonyls emitted from a 4-cylinder turbocharged diesel engine equ... The present work is aimed at the study of number-size distribution of particles, volatile organic compounds (VOCs), and carbonyl compounds (CC) or carbonyls emitted from a 4-cylinder turbocharged diesel engine equipped with a vanadium-based urea selective catalytic reduction catalyst. The engine was run on an electric dynamometer in accordance with the European steady-state cycle. Pollutants were analyzed using an electric low pressure impactor, a gas chromatograph/mass spectrometer, and a high performance liquid chromatography system for the number-size distribution of particles, VOCs, and CC emissions, respectively. Experimental results revealed that total number of particles were decreased, and their number-size distributions were moved from smaller sizes to larger sizes in the presence of the catalyst. The VOCs were greatly reduced downstream of the catalyst. There was a strong correlation between the conversion of styrene and ethyl benzene. The conversion rate of benzene increased with increase of catalyst temperature. Formaldehyde, acetaldehyde, acrolein and acetone were significantly reduced, resulting in a remarkable abatement in carbonyls with the use of the vanadium-based urea-SCR system. 展开更多
关键词 diesel engine selective catalytic reduction particulate volatile organic compounds CARBONYLS
下载PDF
3D Simulation Research on Urea-SCR DeNO_x Catalyst for Diesel Engine
2
作者 姜磊 葛蕴珊 +1 位作者 asad naeem shah 谭建伟 《Journal of Beijing Institute of Technology》 EI CAS 2009年第4期428-432,共5页
In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complemen... In order to reduce oxides of nitrogen (NOx) emanated from a diesel engine, a comprehensive urea selective catalyst reduction (SCR) DeNOx catalyst was modeled in which numerical simulations were used as a complementary tool for the experimental investigations to make the design decisions, and hence shorten the de- velopment process. In this approach, relevant conversion reactions were studied in 1D model, and the parame- ters obtained in this way were transferred to 3D simulations. According to the results of the study, the conver- sion of NO and NO2 increased with the increase in monolith solid temperature. With the increase in the ratio of NO2/NOx the conversion of NO, NO2 and NOx increased resulting in maximum reduction of NOxat the ratio of 1; beyond this ratio, the conversion of NO2 and NOx decreased; however, NO continued to be converted till the ratio was 1.8. The conversion of NOx decreased with the increase in space velocity. 展开更多
关键词 diesel engine selective catalyst reduction (SCR) oxides of nitrogen (NO~) computational fluid dynamics
下载PDF
On-road pollutant emission and fuel consumption characteristics of buses in Beijing 被引量:21
3
作者 Aijuan Wang Yunshan Ge +5 位作者 Jianwei Tan Mingliang Fu asad naeem shah Yan Ding Hong Zhao Bin Liang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第3期419-426,共8页
On-road emission and fuel consumption (FC) levels for Euro Ⅲ and Ⅳ buses fueled on diesel and compressed natural gas (CNG) were compared, and emission and FC characteristics of buses were analyzed based on appro... On-road emission and fuel consumption (FC) levels for Euro Ⅲ and Ⅳ buses fueled on diesel and compressed natural gas (CNG) were compared, and emission and FC characteristics of buses were analyzed based on approximately 28,700 groups of instantaneous data obtained in Beijing using a portable emissions measurement system (PEMS). The experimental results revealed that NOx and PM emissions from CNG buses were decreased by 72.0% and 82.3% respectively, compared with Euro IV diesel buses. Similarly, these emissions were reduced by 75.2% and 96.3% respectively, compared with Euro III diesel buses. In addition, CO2, CO, HC, NOx, PM emissions and FC of Euro IV diesel buses were reduced by 26.4%, 75.2%, 73.6%, 11.4%, 79.1%, and 26.0%, respectively, relative to Euro Ⅲ diesel buses. The CO2, CO, HC, NOx, PM emissions and FC factors all decreased with bus speed increased, while increased as bus acceleration increased. At the same time, the emission/FC rates as well as the emission/FC factors exhibited a strong positive correlation with the vehicle specific power (VSP). They all were the lowest when VSP 〈 0, and then rapidly increased as VSP increased. Furthermore, both the emission/FC rates and emission/FC factors were the highest at accelerations, higher at cruise speeds, and the lowest at decelerations for non-idling buses. These results can provide a base reference to further estimate bus emission and FC inventories in Beijing. 展开更多
关键词 vehicle specific power PEMS driving modes fuel consumption factors
原文传递
Effects of continuously regenerating diesel particulate filters on regulated emissions and number-size distribution of particles emitted from a diesel engine 被引量:15
4
作者 Zhihua Liu asad naeem shah +7 位作者 Yunshan Ge Yan Ding, Jianwei Tan Lei Jiang Linxiao Yu Wei Zhao Chu Wang Tao Zeng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第5期798-807,共10页
The effects of continuously regenerating diesel particulate filter (CRDPF) systems on regulated gaseous emissions, and number-size distribution and mass of particles emanated from a diesel engine have been investiga... The effects of continuously regenerating diesel particulate filter (CRDPF) systems on regulated gaseous emissions, and number-size distribution and mass of particles emanated from a diesel engine have been investigated in this study. Two CRDPF units (CRDPF-1 and CRDPF-2) with different specifications were separately retrofitted to the engine running with European steady-state cycle (ESC). An electrical low pressure impactor (ELPI) was used for particle number-size distribution measurement and mass estimation. The conversion/reduction rate (RcR) of hydrocarbons (HC) and carbon monoxide (CO) across CRDPF-1 was 83% and 96.3%, respectively. Similarly, the RCR of HC and CO and across CRDPF-2 was 91.8% and 99.1%, respectively. The number concentration of particles and their concentration peaks; nuclei mode, accumulation mode and total particles; and particle mass were highly reduced with the CRDPF units. The nuclei mode particles at downstream of CRDPF-1 and CRDPF-2 decreased by 99.9% to 100% and 97.8% to 99.8% respectively; and the particle mass reduced by 73% to 92.2% and 35.3% to 72.4%, respectively, depending on the engine conditions. In addition, nuclei mode particles increased with the increasing of engine speed due to the heterogeneous nucleation initiated by the higher exhaust temperature, while accumulation mode particles were higher at higher loads due to the decrease in the air-to-fuel ratio (A/F) at higher loads. 展开更多
关键词 diesel engine regulated emissions particulate matter number-size distribution continuously regenerating dieselparticulate filter
原文传递
Impacts of continuously regenerating trap and particle oxidation catalyst on the NO_2 and particulate matter emissions emitted from diesel engine 被引量:12
5
作者 Zhihua Liu Yunshan Ge +5 位作者 Jianwei Tan Chao He asad naeem shah Yan Ding LinxiaoYu Wei Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第4期624-631,共8页
Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to e... Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere. 展开更多
关键词 continuously regenerating diesel particulate filter particles oxidation catalyst particle number diesel engine size distribution
原文传递
Emission characteristics of offshore fishing ships in the Yellow Bo Sea, China 被引量:5
6
作者 Yingshuai Liu Yunshan Ge +5 位作者 Jianwei Tan Mingliang Fu asad naeem shah Luqiang Li Zhe Ji Yan Ding 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第3期83-91,共9页
Maritime transport has been playing a decisive role in global trade. Its contribution to the air pollution of the sea and coastal areas has been widely recognized. The air pollutant emission inventories of several har... Maritime transport has been playing a decisive role in global trade. Its contribution to the air pollution of the sea and coastal areas has been widely recognized. The air pollutant emission inventories of several harbors in China have already been established. However,the emission factors of local ships have not been addressed comprehensively, and thus are lacking from the emission inventories. In this study, on-board emission tests of eight diesel-powered offshore fishing ships were conducted near the coastal region of the northern Yellow Bo Sea fishing ground of Dalian, China. Results show that large amounts of fine particles( 0.5 μm, 90%) were found in maneuvering mode, which were about five times higher than those during cruise mode. Emission rates as well as emission factors based on both distance and fuel were determined during the cruise and maneuvering modes(including departure and arrival). Average emission rates and distance-based emission factors of CO, HC and PM were much higher during the maneuvering mode as compared with the cruise mode. However, the average emission rate of Nitrous Oxide(NOx) was higher during the cruise mode as compared with the maneuvering modes. On the contrary, the average distance-based emission factors of NOxwere lower during the cruise mode relative to the maneuvering mode due to the low sailing speed of the latter. 展开更多
关键词 Marine Offshore fishing ship Emission factor PEMS Operating modes
原文传递
Characterization of polycyclic aromatic hydrocarbon emissions from diesel engine retrofitted with selective catalytic reduction and continuously regenerating trap 被引量:1
7
作者 asad naeem shah Yunshan Ge +3 位作者 Jianwei Tan Zhihua Liu Chao He Tao Zeng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第8期1449-1456,共8页
Two after treatment units, selective catalytic reduction (SCR) and continuously regenerating trap (CRT), were independently retrofitted to a diesel engine, with the objective to investigate their impact on the con... Two after treatment units, selective catalytic reduction (SCR) and continuously regenerating trap (CRT), were independently retrofitted to a diesel engine, with the objective to investigate their impact on the conversion/reduction (CR) of polycyclic aromatic hydrocarbons (PAHs). The experiments were conducted under the European steady state cycle (ESC) first without any retrofits to get baseline emissions, and then with SCR and CRT respectively, on the same engine. The particulate matter (PM)-phase PAHs were trapped in fiberglass filters, whereas gas-phase PAHs were collected in cartridges, and then analyzed using a gas chromatograph-mass spectrometer (GC-MS). Both PM-phase and gas-phase PAHs were greatly reduced with CRT showing respective CR of 90.7% and above 80%, whereas only gas-phase PAHs were abated in the case of SCR, with CR of above 75%. Lower molecular weight (LMW) PAHs were in abundance, while naphthalene exhibited a maximum relative contribution (RC) to LMW-PAHs for all three cases. Further, the CR of naphthalene and anthracene were increased with increasing catalyst temperature of SCR, most likely due to their conversion to solid particles. Moreover, the Benzo[a]Pyrene equivalent (BaPeq) of PAHs was greatly reduced with CRT, owing to substantial reduction of total PAHs. 展开更多
关键词 diesel engine continuously regenerating trap urea-selective catalytic reduction polycyclic aromatic hydrocarbons unregulated emissions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部