期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Induced defense response in red mango fruit against Colletotrichum gloeosporioides 被引量:1
1
作者 Pradeep Kumar Sudheeran Noa Sela +7 位作者 Mira Carmeli-Weissberg Rinat Ovadia Sayantan Panda Oleg Feygenberg Dalia Maurer Michal Oren-Shamir asaph aharoni Noam Alkan 《Horticulture Research》 SCIE 2021年第1期212-222,共11页
Mango fruit exposed to sunlight develops red skin and are more resistant to biotic and abiotic stresses.Here we show that harvested red mango fruit that was exposed to sunlight at the orchard is more resistant than gr... Mango fruit exposed to sunlight develops red skin and are more resistant to biotic and abiotic stresses.Here we show that harvested red mango fruit that was exposed to sunlight at the orchard is more resistant than green fruit to Colletotrichum gloeosporioides.LCMS analysis showed high amounts of antifungal compounds,as glycosylated flavonols,glycosylated anthocyanins,and mangiferin in red vs.green mango skin,correlated with higher antioxidant and lower ROS.However,also the green side of red mango fruit that has low levels of flavonoids was resistant,indicated induced resistance.Transcriptomes of red and green fruit inoculated on their red and green sides with C.gloeosporioides were analyzed.Overall,in red fruit skin,2,187 genes were upregulated in response to C.gloeosporioides.On the green side of red mango,upregulation of 22 transcription factors and 33 signaling-related transcripts indicated induced resistance.The RNA-Seq analysis suggests that resistance of the whole red fruit involved upregulation of ethylene,brassinosteroid,and phenylpropanoid pathways.To conclude,red fruit resistance to fungal pathogen was related to both flavonoid toxicity and primed resistance of fruit that was exposed to light at the orchard. 展开更多
关键词 gloeosporioides RESISTANCE FRUIT
下载PDF
The Arabidopsis DSO/ABCG 11 Transporter Affects Cutin Metabolism in Reproductive Organs and Suberin in Roots 被引量:13
2
作者 David Panikashvili Jian Xin Shi +3 位作者 Samuel Bocobza Rochus Benni Franke Lukas Schreiber asaph aharoni 《Molecular Plant》 SCIE CAS CSCD 2010年第3期563-575,共13页
Apart from its significance in the protection against stress conditions, the cuticular cover is essential for proper development of the diverse surface structures formed on aerial plant organs. This layer mainly consi... Apart from its significance in the protection against stress conditions, the cuticular cover is essential for proper development of the diverse surface structures formed on aerial plant organs. This layer mainly consists of a cutin matrix, embedded and overlaid with cuticular waxes, Following their biosynthesis in epidermal cells, cutin and waxes were suggested to be exported across the plasma membrane by ABCG-type transporters such as DSO/ABCG11 to the cell wall and further to extracellular matrix. Here, additional aspects of DSO/ABCG11 function were investigated, predomi- nantly in reproductive organs, which were not revealed in the previous reports. This was facilitated by the generation of a transgenic DSO/ABCG11 silenced line (dso-4) that displayed relatively subtle morphological and chemical phenotypes. These included altered petal and silique morphology, fusion of seeds, and changes in levels of cutin monomers in flowers and siliques. The dso-4 phenotypes corresponded to the strong DSO/ABCG11 gene expression in the embryo epidermis as well as in the endosperm tissues of the developing seeds. Moreover, the DSO/ABCG11 protein displayed polar localization in the embryo protoderm. Transcriptome analysis of the dso-4 mutant leaves and stems showed that reduced DSO/ABCG11 activity suppressed the expression of a large number of cuticle-associated genes, implying that export of cuticular lipids from the plasma membrane is a rate-limiting step in cuticle metabolism. Surprisingly, root suberin composition of dso-4 was altered, as well as root expression of two suberin biosynthetic genes. Taken together, this study provides new insights into cutin and suberin metabolism and their role in reproductive organs and roots development. 展开更多
关键词 ARABIDOPSIS transporters FLOWER CUTIN waxes suberin.
原文传递
"La Vie en Rose": Biosynthesis, Sources, and Applications of Betalain Pigments 被引量:13
3
作者 Guy Polturak asaph aharoni 《Molecular Plant》 SCIE CAS CSCD 2018年第1期7-22,共16页
Betalains are tyrosine-derived red-violet and yellow pigments found exclusively in plants of the Caryophyllales order, which have drawn both scientific and economic interest. Nevertheless, research into betalain chemi... Betalains are tyrosine-derived red-violet and yellow pigments found exclusively in plants of the Caryophyllales order, which have drawn both scientific and economic interest. Nevertheless, research into betalain chemistry, biochemistry, and function has been limited as comparison with other major classes of plant pigments such as anthocyanins and carotenoids. The core biosynthetic pathway of this pigment class has only been fully elucidated in the past few years, opening up the possibility for betalain pigment engineering in plants and microbes. In this review, we discuss betalain metabolism in light of recent advances in the field, with a current survey of characterized genes and enzymes that take part in be- talain biosynthesis, catabolism, and transcriptional regulation, and an outlook of what is yet to be discovered. A broad view of currently used and potential new sources for betalains, including utilization of natural sources or metabolic engineering, is provided together with a summary of potential applications of beta- lains in research and commercial use. 展开更多
关键词 betalain biosynthesis plant pigment secondary metabolism metabolic engineering plant biotechnology
原文传递
The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice 被引量:11
4
作者 Xiaolei Zhu Jing Yu +7 位作者 Jianxin Shi Takayuki Tohge Alisdair R.Fernie Sagit Meir asaph aharoni Dawei Xu Dabing Zhang Wanqi Liang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2017年第9期612-628,共17页
Lipid and phenolic metabolism are important for pollen exine formation. In Arabidopsis, polyketide synthases (PKSs) are essential for both sporopollenin biosynthesis and exine formation. Here, we characterized the r... Lipid and phenolic metabolism are important for pollen exine formation. In Arabidopsis, polyketide synthases (PKSs) are essential for both sporopollenin biosynthesis and exine formation. Here, we characterized the role of a polyketide synthase (OsPKS2) in male reproduction of rice (Oryza sativa). Recombinant OsPKS2 catalyzed the condensation of fatty acyl-CoA with malonyl- CoA to generate triketide and tetraketide α-pyrones, the main components of pollen exine. Indeed, the ospks2 mutant had defective exine patterning and was male sterile. However, the mutant showed no significant reduction in sporopollenin accumulation. Compared with the WT (wild type), ospks2 displayed unconfined and amorphous tectum and nexine layers in the exine, and less organized Ubisch bodies. Like the pksb/lap5 mutant of the Arabidopsis ortholog, ospks2 showed broad alterations in the profiles of anther-related phenolic compounds. However, unlike pksb/laps, in which most detected phenolics were substantially decreased, ospks2 accumu- lated higher levels of phenolics. Based on these results and our observation that OsPKS2 is unable to fully restore the exine defects in the pksb/laps, we propose that PKS proteins have functionally diversified during evolution. Collectively, our results suggest that PKSs represent a conserved and diversified biochemical pathway for anther and pollen development in higher plants. 展开更多
关键词 PKS The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice Figure
原文传递
Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth 被引量:2
5
作者 Jianghua Cai Adam Jozwiak +4 位作者 Lara Holoidovsky Michael MMeijler Sagit Meir Ilana Rogachev asaph aharoni 《Molecular Plant》 SCIE CAS CSCD 2021年第3期440-455,共16页
N-hydroxy-pipecolic acid(NHP)activates plant systemic acquired resistance(SAR).Enhanced defense responses are typically accompanied by deficiency in plant development and reproduction.Despite of extensive studies on S... N-hydroxy-pipecolic acid(NHP)activates plant systemic acquired resistance(SAR).Enhanced defense responses are typically accompanied by deficiency in plant development and reproduction.Despite of extensive studies on SAR induction,the effects of NHPmetabolismon plant growth remain largely unclear.In this study,we discovered that NHP glycosylation is a critical factor that fine-tunes the tradeoff between SAR defense and plant growth.We demonstrated that a UDP-glycosyltransferase(UGT76B1)forming NHP glycoside(NHPG)controls the NHP to NHPG ratio.Consistently,the ugt76b1 mutant exhibits enhanced SAR response and an inhibitory effect on plant growth,while UGT76B1 overexpression attenuates SAR response,promotes growth,and delays senescence,indicating that NHP levels are dependent on UGT76B1 function in the course of SAR.Furthermore,our results suggested that,upon pathogen attack,UGT76B1-mediated NHP glycosylation forms a‘‘hand brake’’on NHP accumulation by attenuating the positive regulation of NHP biosynthetic pathway genes,highlighting the complexity of SAR-associated networks.In addition,we showed that UGT76B1-mediated NHP glycosylation in the local site is important for fine-tuning SAR response.Our results implicate that engineering plant immunity through manipulating the NHP/NHPG ratio is a promising method to balance growth and defense response in crops. 展开更多
关键词 N-hydroxy-pipecolic acid N-hydroxy-pipecolic acid glycoside UDP-glycosyltransferase GLYCOSYLATION systemic acquired resistance plant growth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部