期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer’s disease
1
作者 ashok iyaswamy Abhimanyu Thakur +14 位作者 Xin-Jie Guan Senthilkumar Krishnamoorthi Tsz Yan Fung Kejia Lu Isha Gaurav Zhijun Yang Cheng-Fu Su Kwok-Fai Lau Kui Zhang Roy Chun-Laam Ng Qizhou Lian King-Ho Cheung Keqiang Ye Huanhuan Joyce Chen Min Li 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2023年第11期5481-5494,共14页
Alzheimer’s disease(AD)is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques,hyperphosphorylated tau protein,and neurofibrillar... Alzheimer’s disease(AD)is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques,hyperphosphorylated tau protein,and neurofibrillary tangles in the brain.The overexpression of amyloid-βprecursor protein(APP)in an AD brain results in the binding of APP intracellular domain(AICD)to Fe65 protein via the C-terminal Fe65-PTB2 interaction,which then triggers the secretion of amyloid-βand the consequent pathogenesis of AD.Apparently,targeting the interaction between APP and Fe65 can offer a promising therapeutic approach for AD.Recently,exosome,a type of extracellular vesicle with diameter around 30–200 nm,has gained much attention as a potential delivery tool for brain diseases,including AD,due to their ability to cross the blood–brain barrier,their efficient uptake by autologous cells,and their ability to be surface-modified with target-specific receptor ligands.Here,the engineering of hippocampus neuron cell-derived exosomes to overexpress Fe65,enabled the development of a novel exosome-based targeted drug delivery system,which carried Corynoxine-B(Cory-B,an autophagy inducer)to the APP overexpressed-neuron cells in the brain of AD mice.The Fe65-engineered HT22 hippocampus neuron cell-derived exosomes(Fe65-EXO)loaded with Cory-B(Fe65-EXO-Cory-B)hijacked the signaling and blocked the natural interaction between Fe65 and APP,enabling APP-targeted delivery of Cory-B.Notably,Fe65-EXO-Cory-B induced autophagy in APP-expressing neuronal cells,leading to amelioration of the cognitive decline and pathogenesis in AD mice,demonstrating the potential of Fe65-EXO-Cory-B as an effective therapeutic intervention for AD. 展开更多
关键词 ALZHEIMER gained loaded
原文传递
Celastrol enhances transcription factor EB (TFEB)-mediated autophagy and mitigates Tau pathology:Implications for Alzheimer's disease therapy 被引量:3
2
作者 Chuanbin Yang Chengfu Su +14 位作者 ashok iyaswamy Senthil Kumar Krishnamoorthi Zhou Zhu Sichang Yang Benjamin Chunkit Tong Jia Liu Sravan G.Sreenivasmurthy Xinjie Guan Yuxuan Kan Aston Jiaxi Wu Alexis Shiying Huang Jieqiong Tan Kingho Cheung Juxian Song Min Li 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第4期1707-1722,共16页
Alzheimer's disease(AD),characterized by the accumulation of protein aggregates including phosphorylated Tau aggregates,is the most common neurodegenerative disorder with limited therapeutic agents.Autophagy plays... Alzheimer's disease(AD),characterized by the accumulation of protein aggregates including phosphorylated Tau aggregates,is the most common neurodegenerative disorder with limited therapeutic agents.Autophagy plays a critical role in the degradation of phosphorylated Tau aggregates,and transcription factor EB(TFEB)is a master regulator of autophagy and lysosomal biogenesis.Thus,small-molecule autophagy enhancers targeting TFEB hold promise for AD therapy.Here,we found that celastrol,an active ingredient isolated from the root extracts of Tripterygium wilfordii(Lei Gong Teng in Chinese)enhanced TFEB-mediated autophagy and lysosomal biogenesis in vitro and in mouse brains.Importantly,celastrol reduced phosphorylated Tau aggregates and attenuated memory dysfunction and cognitive deficits in P301S Tau and 3xTg mice,two commonly used AD animal models.Mechanistical studies suggest that TFEB-mediated autophagy-lysosomal pathway is responsible for phosphorylated Tau degradation in response to celastrol.Overall,our findings indicate that Celastrol is a novel TFEB activator that promotes the degradation of phosphorylated Tau aggregates and improves memory in AD animal models.Therefore,Celastrol shows potential as a novel agent for the treatment and/or prevention of AD and other tauopathies. 展开更多
关键词 TFEB AUTOPHAGY Lysosome biogenesis Alzheimer’s disease(AD) TAU CELASTROL mTOR Therapeutic target
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部