The investigation of low cost uncoated andcoated carbide insert in the hard turning of hardened AISID2 steel (≥55 HRC) will definitely open up a new arena asan economical alternative suitable to industrial machinin...The investigation of low cost uncoated andcoated carbide insert in the hard turning of hardened AISID2 steel (≥55 HRC) will definitely open up a new arena asan economical alternative suitable to industrial machiningsectors. Thus, this paper reports the comparative machin-ability assessment for the hard turning of AISI D2 steel((55 ± 1) HRC) by coated and uncoated carbide insert in adry environment. Micro hardness and abrasion tests werecarried out to assess resistance capability against wear. Theabove test results confirmed the greater wear resistanceability of AIaO3 coated carbide insert over uncoated car-bide. Based on the extensive investigation of comparativemachinability, the coated carbide insert (TiN-TiCN-A12O3)outperformed the uncoated carbide insert with regard tosurface roughness, flank wear, chip-tool interface temper-ature, and chip morphology. Abrasion and diffusion wereobserved as the principal tool wear mechanisms in theinvestigated range. The uncoated carbide failed completelydue to the severe chipping and quick dulling of the cuttingedge, which led to its unsuitability for machining hardenedsteel.展开更多
The present study focused on mathematical modeling, multi response optimization, tool life, and eco- nomical analysis in finish hard turning of AISI D2 steel ((55 4- 1) HRC) using CVD-coated carbide (TiN/TiCN/ A1...The present study focused on mathematical modeling, multi response optimization, tool life, and eco- nomical analysis in finish hard turning of AISI D2 steel ((55 4- 1) HRC) using CVD-coated carbide (TiN/TiCN/ A1203) and uncoated carbide inserts under dry environ- mental conditions. Regression methodology and the grey relational approach were implemented for modeling and multi-response optimization, respectively. Comparative economic statistics were carried out for both inserts, and the adequacy of the correlation model was verified. The experimental and predicted values for all responses were very close to each other, implying the significance of the model and indicating that the correlation coefficients were close to unity. The optimal parametric combinations for A1203 coated carbide were dl-fl-v2 (depth of cut = 0.1 mm, feed = 0.04 mm/r and cutting speed = 108 m/min), and those for the uncoated tool were dl-(0.1 mm)-fl (0.04 mm/r)-vl (63 rn/min). The observed tool life for the coated carbide insert was 15 times higher than that for the uncoated carbide insert, considering flank wear criteria of 0.3 mm. The chip volume after machining for the coated carbide insert was 26.14 times higher than that of the uncoated carbide insert and could be better utilized for higher material removal rate. Abrasion, diffusion, notch- ing, chipping, and built-up edge have been observed to be the principal wear mechanisms for tool life estimation. Use of the coated carbide tool reduced machining costs by about 3.55 times compared to the use of the uncoated carbide insert, and provided economic benefits in hard turning.展开更多
文摘The investigation of low cost uncoated andcoated carbide insert in the hard turning of hardened AISID2 steel (≥55 HRC) will definitely open up a new arena asan economical alternative suitable to industrial machiningsectors. Thus, this paper reports the comparative machin-ability assessment for the hard turning of AISI D2 steel((55 ± 1) HRC) by coated and uncoated carbide insert in adry environment. Micro hardness and abrasion tests werecarried out to assess resistance capability against wear. Theabove test results confirmed the greater wear resistanceability of AIaO3 coated carbide insert over uncoated car-bide. Based on the extensive investigation of comparativemachinability, the coated carbide insert (TiN-TiCN-A12O3)outperformed the uncoated carbide insert with regard tosurface roughness, flank wear, chip-tool interface temper-ature, and chip morphology. Abrasion and diffusion wereobserved as the principal tool wear mechanisms in theinvestigated range. The uncoated carbide failed completelydue to the severe chipping and quick dulling of the cuttingedge, which led to its unsuitability for machining hardenedsteel.
文摘The present study focused on mathematical modeling, multi response optimization, tool life, and eco- nomical analysis in finish hard turning of AISI D2 steel ((55 4- 1) HRC) using CVD-coated carbide (TiN/TiCN/ A1203) and uncoated carbide inserts under dry environ- mental conditions. Regression methodology and the grey relational approach were implemented for modeling and multi-response optimization, respectively. Comparative economic statistics were carried out for both inserts, and the adequacy of the correlation model was verified. The experimental and predicted values for all responses were very close to each other, implying the significance of the model and indicating that the correlation coefficients were close to unity. The optimal parametric combinations for A1203 coated carbide were dl-fl-v2 (depth of cut = 0.1 mm, feed = 0.04 mm/r and cutting speed = 108 m/min), and those for the uncoated tool were dl-(0.1 mm)-fl (0.04 mm/r)-vl (63 rn/min). The observed tool life for the coated carbide insert was 15 times higher than that for the uncoated carbide insert, considering flank wear criteria of 0.3 mm. The chip volume after machining for the coated carbide insert was 26.14 times higher than that of the uncoated carbide insert and could be better utilized for higher material removal rate. Abrasion, diffusion, notch- ing, chipping, and built-up edge have been observed to be the principal wear mechanisms for tool life estimation. Use of the coated carbide tool reduced machining costs by about 3.55 times compared to the use of the uncoated carbide insert, and provided economic benefits in hard turning.