In the present study,Al_(86)Ni_(8)Y_(6) and Al_(86)Ni_(6)Y_(4.5)Co_(2)La_(1.5) bulk amorphous nanocomposites were synthesized by spark plasma sintering of milled melt spun ribbon particles.The as-cast ribbons were of ...In the present study,Al_(86)Ni_(8)Y_(6) and Al_(86)Ni_(6)Y_(4.5)Co_(2)La_(1.5) bulk amorphous nanocomposites were synthesized by spark plasma sintering of milled melt spun ribbon particles.The as-cast ribbons were of near amorphous nature with minute amount of FCC Al embedded in the amorphous matrix.Milling of the ribbons resulted in partial devitrifi cation due to mechanical crystallization.The milled ribbon particles were sintered in the temperature and pressure range of 300-500℃ and 500-700 MPa,respectively.It was observed that nominal amount of amorphous phase was retained at 500℃ and 500 MPa.With increase in sintering pressure and decrease in sintering temperature,the amount of crystalline phase evolution decreased,and maximum amount of amorphous phase was retained at 300℃ and 700 MPa.The microstructure consisting of amorphous phase embedded with hard intermetallic phases led to increase in the nanohardness of Al_(86)Ni_(8)Y_(6) and Al_(86)Ni_(6)Y_(4.5)Co_(2)La_(1.5) as-cast ribbons from 3.26±0.59 GPa and 3.81±0.58 GPa to 6.06±0.70 GPa and 6.14±0.82 GPa,respectively,for the corresponding consolidated amorphous nanocomposite.Microhardness of the three and five component system bulk samples was 4.19±0.13GPa and 3.6±0.13 GPa,respectively.展开更多
基金was fi nancially supported by the Science and Engineering Research Board,Department of Science&Technology,Government of India(Grant No.SB/S3/ME/0044/2013)。
文摘In the present study,Al_(86)Ni_(8)Y_(6) and Al_(86)Ni_(6)Y_(4.5)Co_(2)La_(1.5) bulk amorphous nanocomposites were synthesized by spark plasma sintering of milled melt spun ribbon particles.The as-cast ribbons were of near amorphous nature with minute amount of FCC Al embedded in the amorphous matrix.Milling of the ribbons resulted in partial devitrifi cation due to mechanical crystallization.The milled ribbon particles were sintered in the temperature and pressure range of 300-500℃ and 500-700 MPa,respectively.It was observed that nominal amount of amorphous phase was retained at 500℃ and 500 MPa.With increase in sintering pressure and decrease in sintering temperature,the amount of crystalline phase evolution decreased,and maximum amount of amorphous phase was retained at 300℃ and 700 MPa.The microstructure consisting of amorphous phase embedded with hard intermetallic phases led to increase in the nanohardness of Al_(86)Ni_(8)Y_(6) and Al_(86)Ni_(6)Y_(4.5)Co_(2)La_(1.5) as-cast ribbons from 3.26±0.59 GPa and 3.81±0.58 GPa to 6.06±0.70 GPa and 6.14±0.82 GPa,respectively,for the corresponding consolidated amorphous nanocomposite.Microhardness of the three and five component system bulk samples was 4.19±0.13GPa and 3.6±0.13 GPa,respectively.