In this study, a newly developed titanium superalloy, i.e., the Ti-5553 alloy has used for hot machining. This material replaced Ti-grade-5 alloy in the application of aerospace, automobile, and biomedical sector. How...In this study, a newly developed titanium superalloy, i.e., the Ti-5553 alloy has used for hot machining. This material replaced Ti-grade-5 alloy in the application of aerospace, automobile, and biomedical sector. However, similar to Ti-grade-5 alloy, the Ti-5553 alloy has a low thermal conductivity which makes it difficult-to-cut material categories hence, high tool wear, cutting force and bad surface finish. Hot machining of Ti-5553 has been studied at different machining condition (room and hot) using Deform-2D finite element analysis. The result from the simulation test was compared with the experimental value and reduction of cutting and thrust forces was observed. The experiment was carried out with the same input parameters as simulation, and good coherence between them observed. Additionally, cutting zone temperature, effective stress, etc. for both room and elevated the temperature are also discussed.展开更多
This study investigates the hot machining of Inconel 625 alloy by using flame heating under different machining conditions using finite element analysis(FEM).Turning tests are performed at different cutting speeds and...This study investigates the hot machining of Inconel 625 alloy by using flame heating under different machining conditions using finite element analysis(FEM).Turning tests are performed at different cutting speeds and heating temperatures using uncoated carbide insert by DEFORM software.Significant reduction in cutting force and tool wear has achieved at heating conditions compared to room temperature.Highest tool life is achieved at the highest cutting speed and higher heating temperature condition.At heating conditions of the 600℃ continuous chip is formed whereas at room temperature saw-tooth chip formation is observed.A significant agreement is achieved between simulated and experimental cutting forces and chip morphology.The effect of feed rates and depth of cuts are also studied experimentally during turning of Inconel 625 in a systematic manner.展开更多
文摘In this study, a newly developed titanium superalloy, i.e., the Ti-5553 alloy has used for hot machining. This material replaced Ti-grade-5 alloy in the application of aerospace, automobile, and biomedical sector. However, similar to Ti-grade-5 alloy, the Ti-5553 alloy has a low thermal conductivity which makes it difficult-to-cut material categories hence, high tool wear, cutting force and bad surface finish. Hot machining of Ti-5553 has been studied at different machining condition (room and hot) using Deform-2D finite element analysis. The result from the simulation test was compared with the experimental value and reduction of cutting and thrust forces was observed. The experiment was carried out with the same input parameters as simulation, and good coherence between them observed. Additionally, cutting zone temperature, effective stress, etc. for both room and elevated the temperature are also discussed.
文摘This study investigates the hot machining of Inconel 625 alloy by using flame heating under different machining conditions using finite element analysis(FEM).Turning tests are performed at different cutting speeds and heating temperatures using uncoated carbide insert by DEFORM software.Significant reduction in cutting force and tool wear has achieved at heating conditions compared to room temperature.Highest tool life is achieved at the highest cutting speed and higher heating temperature condition.At heating conditions of the 600℃ continuous chip is formed whereas at room temperature saw-tooth chip formation is observed.A significant agreement is achieved between simulated and experimental cutting forces and chip morphology.The effect of feed rates and depth of cuts are also studied experimentally during turning of Inconel 625 in a systematic manner.