期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Hybrid Algorithm Based on PSO and GA for Feature Selection 被引量:1
1
作者 Yu Xue asma aouari +1 位作者 Romany F.Mansour Shoubao Su 《Journal of Cyber Security》 2021年第2期117-124,共8页
One of the main problems of machine learning and data mining is to develop a basic model with a few features,to reduce the algorithms involved in classification’s computational complexity.In this paper,the collection... One of the main problems of machine learning and data mining is to develop a basic model with a few features,to reduce the algorithms involved in classification’s computational complexity.In this paper,the collection of features has an essential importance in the classification process to be able minimize computational time,which decreases data size and increases the precision and effectiveness of specific machine learning activities.Due to its superiority to conventional optimization methods,several metaheuristics have been used to resolve FS issues.This is why hybrid metaheuristics help increase the search and convergence rate of the critical algorithms.A modern hybrid selection algorithm combining the two algorithms;the genetic algorithm(GA)and the Particle Swarm Optimization(PSO)to enhance search capabilities is developed in this paper.The efficacy of our proposed method is illustrated in a series of simulation phases,using the UCI learning array as a benchmark dataset. 展开更多
关键词 Evolutionary computation genetic algorithm hybrid approach META-HEURISTIC feature selection particle swarm optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部