期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Heat Transfer Characteristics for Solar Energy Aspect on the Flow of Tangent Hyperbolic Hybrid Nanofluid over a Sensor Wedge and Stagnation Point Surface
1
作者 asmaa habib alanzi N.Ameer Ahammad 《Frontiers in Heat and Mass Transfer》 EI 2023年第1期179-197,共19页
The conversion of solar radiation to thermal energy has recently attracted a lot of interest as the requirement for renewable heat and power grows.Due to their enhanced ability to promote heat transmission,nanofluids ... The conversion of solar radiation to thermal energy has recently attracted a lot of interest as the requirement for renewable heat and power grows.Due to their enhanced ability to promote heat transmission,nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems.This article focus solar energy aspect on the effects of the thermal radiation in the flow of a hyperbolic tangent nanofluid containing magnesium oxide(MgO)and silver(Ag)are the nanoparticle with the base fluid as kerosene through a wedge and stagnation.The system of hybrid nanofluid transport equations are transformed into ordinary differential systems using the appropriate self-similarity transformations.These systems are then determined by using the Runge-Kutta 4th order with shooting technique in the MATLAB solver.Graphs and tables illustrate the effects of significant factors on the fluid transport qualities.The velocity is growths but it is declarations in temperature by increasing values in the power law index parameter.Weissenberg numbers with higher values improve the temperature and velocity in the wedge and stagnation,respectively.The thermal radiation and Eckert number both parameters intensification the rate of heat transfer for wedge and stagnation,respectively.The heat transfer rate in fluid flow over a stagnation point is found to be 14.0346%higher compared to flow over a wedge.Moreover,incorporating hybrid nanoparticles into the base fluid enhances the heat transfer rate by 8.92%for the wedge case and 13.26%for the stagnation point case. 展开更多
关键词 Hyperbolic tangent sensor surface kerosene base fluid thermal radiation and hybrid nanoparticles
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部