期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Overview of Jute Fibre as Thermoplastic Matrix Polymer Reinforcement
1
作者 Tezara Cionita Mohammad Hazim Mohamad Hamdan +9 位作者 Januar Parlaungan Siregar Deni Fajar Fitriyana Ramli Junid Wong Ling Shing Jamiluddin Jaafar Agustinus Purna Irawan Teuku Rihayat Rifky Ismail athanasius priharyoto bayuseno Emilianus Jehadus 《Journal of Renewable Materials》 EI CAS 2024年第3期457-483,共27页
Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberrei... Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberreinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution.Among the natural fibre,jute fibre obtained from a bast plant has an increasing trend in the application,especially as a reinforcement material.Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites.Nevertheless,current demands on sustainable materials have required new developments in thermoplastic composites.In this paper,the author reviews jute plants as reinforcement materials for thermoplastic matrix polymers.This review provides an overview of the sustainability of jute plants as reinforcement material for thermoplastic matrix polymers.The overview on jute based thermoplastic composites focused on the thermal behavior and mechanical properties.Apart from physical,chemical,and mechanical properties,the study also covers the current and perspectives for future research challenges faced by the researchers on jute fibre reinforced thermoplastic composites. 展开更多
关键词 Jute fibre sustainable development goals(SDGs) natural fibre THERMOPLASTIC composite sustainable manufacturing
下载PDF
Investigation of contact behavior on a model of the dual-mobility artificial hip joint for Asians in different inner liner thicknesses
2
作者 Taufiq Hidayat Muhammad Imam Ammarullah +5 位作者 Rifky Ismail Eko Saputra M Danny Pratama Lamura Chethan K N athanasius priharyoto bayuseno J Jamari 《World Journal of Orthopedics》 2024年第4期321-336,共16页
BACKGROUND The four components that make up the current dual-mobility artificial hip joint design are the femoral head,the inner liner,the outer liner as a metal cover to prevent wear,and the acetabular cup.The acetab... BACKGROUND The four components that make up the current dual-mobility artificial hip joint design are the femoral head,the inner liner,the outer liner as a metal cover to prevent wear,and the acetabular cup.The acetabular cup and the outer liner were constructed of 316L stainless steel.At the same time,the inner liner was made of ultra-high-molecular-weight polyethylene(UHMWPE).As this new dual-mobility artificial hip joint has not been researched extensively,more tribological research is needed to predict wear.The thickness of the inner liner is a significant component to consider when calculating the contact pressure.AIM To make use of finite element analysis to gain a better understanding of the contact behavior in various inner liner thicknesses on a new model of a dual-mobility artificial hip joint,with the ultimate objective of determining the inner liner thickness that was most suitable for this particular type of dual-mobility artificial hip joint.METHODS In this study,the size of the femoral head was compared between two diameters(28 mm and 36 mm)and eight inner liner thicknesses ranging from 5 mm to 12 mm.Using the finite element method,the contact parameters,including the maximum contact pressure and contact area,have been evaluated in light of the Hertzian contact theory.The simulation was performed statically with dissipated energy and asymmetric behavior.The types of interaction were surface-to-surface contact and normal contact behavior.RESULTS The maximum contact pressures in the inner liner(UHMWPE)at a head diameter of 28 mm and 36 mm are between 3.7-13.5 MPa and 2.7-10.4 MPa,respectively.The maximum von Mises of the inner liner,outer liner,and acetabular cup are 2.4–11.4 MPa,15.7–44.3 MPa,and 3.7–12.6 MPa,respectively,for 28 mm head.Then the maximum von Mises stresses of the 36 mm head are 1.9-8.9 MPa for the inner liner,9.9-32.8 MPa for the outer liner,and 2.6-9.9 MPa for the acetabular cup.A head with a diameter of 28 mm should have an inner liner with a thickness of 12 mm.Whereas the head diameter was 36 mm,an inner liner thickness of 8 mm was suitable.CONCLUSION The contact pressures and von Mises stresses generated during this research can potentially be exploited in estimating the wear of dual-mobility artificial hip joints in general.Contact pressure and von Mises stress reduce with an increasing head diameter and inner liner’s thickness.Present findings would become one of the references for orthopedic surgery for choosing suitable bearing geometric parameter of hip implant. 展开更多
关键词 Contact behavior Contact pressure Finite element analysis Dual-mobility Artificial hip joint
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部