This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride (AlPcCl) thin films. To fabricate the sensors, 50-nm-thick electrodes with 50-μ gaps betw...This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride (AlPcCl) thin films. To fabricate the sensors, 50-nm-thick electrodes with 50-μ gaps between them are deposited on glass substrates. AlPcCl thin films with thickness of 50–100 nm are deposited in the gap between electrodes by thermal evaporation. The resistance of the sensors decreases with increasing thickness and the annealing at 100 ℃ results in an increase in the initial resistance of sensors up to 24%. The sensing mechanism is based on the change in resistance with temperature. For temperature varying from 25 ℃ to 80 ℃, the change in resistance is up to 60%. Simulation is carried out and results obtained coincide with experimental data with an error of ±1%.展开更多
基金Project supported by the Center of Excellence for Advanced Materials Research(CEAMR)King Abdulaziz University,Jeddah(Grant No.CEAMR-434-03)
文摘This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride (AlPcCl) thin films. To fabricate the sensors, 50-nm-thick electrodes with 50-μ gaps between them are deposited on glass substrates. AlPcCl thin films with thickness of 50–100 nm are deposited in the gap between electrodes by thermal evaporation. The resistance of the sensors decreases with increasing thickness and the annealing at 100 ℃ results in an increase in the initial resistance of sensors up to 24%. The sensing mechanism is based on the change in resistance with temperature. For temperature varying from 25 ℃ to 80 ℃, the change in resistance is up to 60%. Simulation is carried out and results obtained coincide with experimental data with an error of ±1%.