Ultrasound is used in various chemical reaction processes, and these reactions are influenced by ultrasonic frequency. A threshold power is required for the ultrasonic degradation reaction and oxidation reaction cause...Ultrasound is used in various chemical reaction processes, and these reactions are influenced by ultrasonic frequency. A threshold power is required for the ultrasonic degradation reaction and oxidation reaction caused by hydroxyl radicals, and the cavitation threshold power is also influenced by frequency generally. In this study, the effects of frequency on the threshold power of methylene blue degradation and KI oxidation were investigated in the range between 22.8 kHz and 1640 kHz. The threshold power of KI oxidation reaction increased with increasing frequency. This phenomenon well agrees with previous study, and it is revealed that the generation of I-3?ion is caused by oxidation reaction of Iˉ ions with hydroxyl radicals. On the other hand, the threshold power of methylene blue degradation reaction was not affected by frequency. The ultrasonic degradation of methylene blue is considered to be caused by hydroxyl radicals, and there is a linear relationship between degradation rate constant and sonochemical efficiency value. However, it is guessed that the degradation of methylene blue is occurred inside cavitation bubble by pyrolysis at high frequency regions.展开更多
The ultrasonic degradation of methylene blue at a frequency of 490 kHz was carried out in the absence and presence of TiO2 or Al2O3 particle, and the effects of amounts of particle on the enhancement of degradation ra...The ultrasonic degradation of methylene blue at a frequency of 490 kHz was carried out in the absence and presence of TiO2 or Al2O3 particle, and the effects of amounts of particle on the enhancement of degradation rate constant estimated by assuming first-order-kinetics were investigated. The degradation reaction was enhanced by particle addition, and the apparent degradation rate constant is proportional to the increase in amount of particle. In addition, the constant of proportionality is not influenced by degraded material and ultrasonic frequency. However, particle type influences the constant of proportionality, and the value of TiO2 particle is about 6 times as large as that of Al2O3 particle.展开更多
文摘Ultrasound is used in various chemical reaction processes, and these reactions are influenced by ultrasonic frequency. A threshold power is required for the ultrasonic degradation reaction and oxidation reaction caused by hydroxyl radicals, and the cavitation threshold power is also influenced by frequency generally. In this study, the effects of frequency on the threshold power of methylene blue degradation and KI oxidation were investigated in the range between 22.8 kHz and 1640 kHz. The threshold power of KI oxidation reaction increased with increasing frequency. This phenomenon well agrees with previous study, and it is revealed that the generation of I-3?ion is caused by oxidation reaction of Iˉ ions with hydroxyl radicals. On the other hand, the threshold power of methylene blue degradation reaction was not affected by frequency. The ultrasonic degradation of methylene blue is considered to be caused by hydroxyl radicals, and there is a linear relationship between degradation rate constant and sonochemical efficiency value. However, it is guessed that the degradation of methylene blue is occurred inside cavitation bubble by pyrolysis at high frequency regions.
文摘The ultrasonic degradation of methylene blue at a frequency of 490 kHz was carried out in the absence and presence of TiO2 or Al2O3 particle, and the effects of amounts of particle on the enhancement of degradation rate constant estimated by assuming first-order-kinetics were investigated. The degradation reaction was enhanced by particle addition, and the apparent degradation rate constant is proportional to the increase in amount of particle. In addition, the constant of proportionality is not influenced by degraded material and ultrasonic frequency. However, particle type influences the constant of proportionality, and the value of TiO2 particle is about 6 times as large as that of Al2O3 particle.