The main purpose of this paper is to study the reliability due to the employment of distributed generations (DG) integrated to distribution system. The system under this study is from Provincial Electricity Authority ...The main purpose of this paper is to study the reliability due to the employment of distributed generations (DG) integrated to distribution system. The system under this study is from Provincial Electricity Authority (PEA) that is a part of Thailand’s distribution system. Data of geographic information systems (GIS) including the distance of distribution line and location of load that are parameter of PEA is simulated using digital simulation and electrical network calculation program (DIgSILENT) to analyze the impact of reliability with the installing DG into the distribution system. The system average interruption frequency index (SAIFI), the system average interruption duration index (SAIDI) and interruption cost are assessed as index of reliability by comparing the SAIFI, SAIDI, and interruption cost between the base case (no DG) and the case that DG connected to the distribution system. The results can be summarized by focusing on location of DG, the capacity of DG, the size of load, and the distance of load which are factors able to impact to SAIFI, SAIDI, and interruption cost.展开更多
This paper proposes to study the impacts of electrical line losses due to the connection of distributed generators (DG) to 22kV distribution system of Provincial Electricity Authority (PEA). Data of geographic informa...This paper proposes to study the impacts of electrical line losses due to the connection of distributed generators (DG) to 22kV distribution system of Provincial Electricity Authority (PEA). Data of geographic information systems (GIS) including the distance of distribution line and location of load being key parameter of PEA is simulated using digital simulation and electrical network calculation program (DIgSILENT) to analyze power loss of the distribution system. In addition, the capacity and location of DG installed into the distribution system is considered. The results are shown that, when DG is installed close to the substation, the electrical line losses are reduced. However, if DG capacity becomes larger and the distance between DG and load is longer, the electrical line losses tend to increase. The results of this paper can be used to create the suitability and fairness of the fee for both DG and utility.展开更多
This paper proposes to study the coordination of protective devices when 8 MW synchronous generators are interconnected to distribution System of PEA. The coordination between recloser and drop out fuse is investigate...This paper proposes to study the coordination of protective devices when 8 MW synchronous generators are interconnected to distribution System of PEA. The coordination between recloser and drop out fuse is investigated in this paper. The three-phase fault is simulated using digital simulation and electrical network calculation program (DIgSILENT). The results are shown that the short circuit current from substation is reduced comparing to the distribution system without DG connected. It causes to protective device coordination inconsistently, so the maintenance will be delayed more than expected.展开更多
文摘The main purpose of this paper is to study the reliability due to the employment of distributed generations (DG) integrated to distribution system. The system under this study is from Provincial Electricity Authority (PEA) that is a part of Thailand’s distribution system. Data of geographic information systems (GIS) including the distance of distribution line and location of load that are parameter of PEA is simulated using digital simulation and electrical network calculation program (DIgSILENT) to analyze the impact of reliability with the installing DG into the distribution system. The system average interruption frequency index (SAIFI), the system average interruption duration index (SAIDI) and interruption cost are assessed as index of reliability by comparing the SAIFI, SAIDI, and interruption cost between the base case (no DG) and the case that DG connected to the distribution system. The results can be summarized by focusing on location of DG, the capacity of DG, the size of load, and the distance of load which are factors able to impact to SAIFI, SAIDI, and interruption cost.
文摘This paper proposes to study the impacts of electrical line losses due to the connection of distributed generators (DG) to 22kV distribution system of Provincial Electricity Authority (PEA). Data of geographic information systems (GIS) including the distance of distribution line and location of load being key parameter of PEA is simulated using digital simulation and electrical network calculation program (DIgSILENT) to analyze power loss of the distribution system. In addition, the capacity and location of DG installed into the distribution system is considered. The results are shown that, when DG is installed close to the substation, the electrical line losses are reduced. However, if DG capacity becomes larger and the distance between DG and load is longer, the electrical line losses tend to increase. The results of this paper can be used to create the suitability and fairness of the fee for both DG and utility.
文摘This paper proposes to study the coordination of protective devices when 8 MW synchronous generators are interconnected to distribution System of PEA. The coordination between recloser and drop out fuse is investigated in this paper. The three-phase fault is simulated using digital simulation and electrical network calculation program (DIgSILENT). The results are shown that the short circuit current from substation is reduced comparing to the distribution system without DG connected. It causes to protective device coordination inconsistently, so the maintenance will be delayed more than expected.