Nano mechanical behavior of Mgsingle bondLi nanowire is investigated under tension and compression to elicit property alteration due to Li alloying in Mg within hexagonal range.Embedded atom method(EAM)is employed to ...Nano mechanical behavior of Mgsingle bondLi nanowire is investigated under tension and compression to elicit property alteration due to Li alloying in Mg within hexagonal range.Embedded atom method(EAM)is employed to carry out present simulation work.Nanowire under consideration is supposed to be isotropic and mechanical behavior is uninfluenced by material texture.The elastic modulus,yield strength both in tension and compression is assessed with change in strain rate.Effects of temperature in tension and compression are studied.Results of present simulation work elicit serrated yielding under uniaxial tension,however,twin mediated deformation under compression is completely tuned with previously reported experimental works.This investigation bridges nanometer scale properties to microscale material response,which in turn can be applied for designing suitable robust processing routes of this material.展开更多
Homogeneous crystal nucleation is prone to formation of defects and often experiences heterogeneities,the inferences of which are crucial in processing crystalline materials and controlling their physical properties. ...Homogeneous crystal nucleation is prone to formation of defects and often experiences heterogeneities,the inferences of which are crucial in processing crystalline materials and controlling their physical properties. It has been debated in literature whether the associated heterogeneities are an integral part of the homogenous nucleation. In this study by integrating a probabilistic approach with large-scale molecular dynamics simulations based on the most advanced high-temperature interatomic potentials, we attempt to address the ambiguity over the sources and mechanisms of heterogeneities in homogenous nucleation during solidification of pure melts. Different classes of structured metals are investigated for this purpose,including face-centered cubic aluminum, body-centered cubic iron, and hexagonal close-packed magnesium. The results reveal, regardless of the element type or the solidified crystal structure, that the densification process of liquid metals is accompanied by short-range orderings of atoms prior to the formation of crystals, controlling the heterogeneities during homogenous nucleation.展开更多
文摘Nano mechanical behavior of Mgsingle bondLi nanowire is investigated under tension and compression to elicit property alteration due to Li alloying in Mg within hexagonal range.Embedded atom method(EAM)is employed to carry out present simulation work.Nanowire under consideration is supposed to be isotropic and mechanical behavior is uninfluenced by material texture.The elastic modulus,yield strength both in tension and compression is assessed with change in strain rate.Effects of temperature in tension and compression are studied.Results of present simulation work elicit serrated yielding under uniaxial tension,however,twin mediated deformation under compression is completely tuned with previously reported experimental works.This investigation bridges nanometer scale properties to microscale material response,which in turn can be applied for designing suitable robust processing routes of this material.
基金financially supported by the National Science Foundation (Nos.NSF-CMMI 1855491 and NSF-CMMI 2031800)。
文摘Homogeneous crystal nucleation is prone to formation of defects and often experiences heterogeneities,the inferences of which are crucial in processing crystalline materials and controlling their physical properties. It has been debated in literature whether the associated heterogeneities are an integral part of the homogenous nucleation. In this study by integrating a probabilistic approach with large-scale molecular dynamics simulations based on the most advanced high-temperature interatomic potentials, we attempt to address the ambiguity over the sources and mechanisms of heterogeneities in homogenous nucleation during solidification of pure melts. Different classes of structured metals are investigated for this purpose,including face-centered cubic aluminum, body-centered cubic iron, and hexagonal close-packed magnesium. The results reveal, regardless of the element type or the solidified crystal structure, that the densification process of liquid metals is accompanied by short-range orderings of atoms prior to the formation of crystals, controlling the heterogeneities during homogenous nucleation.