In this paper, the approximate solution to the linear fredholm-stieltjes integral equations of the second kind (LFSIESK) by using the generalized midpoint rule (GMR) is introduced. A comparison resu|ts depending ...In this paper, the approximate solution to the linear fredholm-stieltjes integral equations of the second kind (LFSIESK) by using the generalized midpoint rule (GMR) is introduced. A comparison resu|ts depending on the number of subintervals "n" are calculated by using Maple 18 and presented. These results are demonstrated graphically in a particular numerical example. An algorithm of this application is given by using Maple 18.展开更多
文摘In this paper, the approximate solution to the linear fredholm-stieltjes integral equations of the second kind (LFSIESK) by using the generalized midpoint rule (GMR) is introduced. A comparison resu|ts depending on the number of subintervals "n" are calculated by using Maple 18 and presented. These results are demonstrated graphically in a particular numerical example. An algorithm of this application is given by using Maple 18.